

 CSE143 Section #12 Problems

1. Recursive Tracing, 15 points. Consider the following method:

 public void mystery(int n) {

 System.out.print("+");

 if (n >= 10) {

 mystery(n / 10);

 }

 if (n % 2 == 0) {

 System.out.print("-");

 } else {

 System.out.print("*");

 }

 }

 For each call below, indicate what output is produced:

 Method Call Output Produced

 mystery(5); _____________________________________

 mystery(15); ______________________________________

 mystery(304); ______________________________________

 mystery(9247); ______________________________________

 mystery(43269); ______________________________________

2. Recursive Programming, 15 points. Write a recursive method called

 doubleDigit that takes an integer n and a digit d as parameters and that

 returns the integer obtained by replacing all occurrences of d in n with two

 of that digit. For example, doubleDigit(3797, 7) would return 377977

 because the two occurrences of the digit 7 are replaced with two of that

 digit. The table below includes more examples.

 Method Value Method Value

 Call Returned Call Returned

 --------------------------------- ----------------------------------

 doubleDigit(2, 2) 22 doubleDigit(2001, 0) 200001

 doubleDigit(0, 0) 0 doubleDigit(12345, 6) 12345

 doubleDigit(8, 6) 8 doubleDigit(72773, 7) 77277773

 doubleDigit(55, 2) 55 doubleDigit(3445, 5) 34455

 doubleDigit(33, 3) 3333 doubleDigit(54224, 4) 5442244

 doubleDigit(-101, 1) -11011 doubleDigit(-624243, 4) -62442443

 doubleDigit(323, 3) 33233 doubleDigit(5340909, 0) 534009009

 Notice that the number can be negative. Your method should throw an

 IllegalArgumentException if the value of d is not a 1-digit number (i.e.,

 not between 0 and 9 inclusive). You are not allowed to construct any

 structured objects to solve this problem (no string, array, ArrayList,

 StringBuilder, Scanner, etc) and you may not use a while loop, for loop or

 do/while loop to solve this problem; you must use recursion.

3. Details of inheritance, 20 points. Assuming that the following classes have

 been defined:

 public class Fork extends Pot {

 public void method2() {

 System.out.println("Fork 2");

 super.method2();

 }

 }

 public class Pot {

 public void method2() {

 System.out.println("Pot 2");

 }

 public void method3() {

 System.out.println("Pot 3");

 method2();

 }

 }

 public class Bowl extends Fork {

 public void method1() {

 System.out.println("Bowl 1");

 }

 public void method2() {

 System.out.println("Bowl 2");

 }

 }

 public class Spoon extends Pot {

 public void method1() {

 System.out.println("Spoon 1");

 }

 public void method2() {

 System.out.println("Spoon 2");

 }

 }

And assuming the following variables have been defined:

 Pot var1 = new Spoon();

 Bowl var2 = new Bowl();

 Pot var3 = new Bowl();

 Pot var4 = new Pot();

 Object var5 = new Bowl();

 Pot var6 = new Fork();

In the table below, indicate in the right-hand column the output produced by

the statement in the left-hand column. If the statement produces more than one

line of output, indicate the line breaks with slashes as in "a/b/c" to indicate

three lines of output with "a" followed by "b" followed by "c". If the

statement causes an error, fill in the right-hand column with either the phrase

"compiler error" or "runtime error" to indicate when the error would be

detected.

 Statement Output

 --

 var1.method2(); ____________________________

 var2.method2(); ____________________________

 var3.method2(); ____________________________

 var4.method2(); ____________________________

 var5.method2(); ____________________________

 var6.method2(); ____________________________

 var1.method1(); ____________________________

 var2.method1(); ____________________________

 var3.method1(); ____________________________

 var1.method3(); ____________________________

 var2.method3(); ____________________________

 var3.method3(); ____________________________

 var4.method3(); ____________________________

 ((Spoon)var1).method1(); ____________________________

 ((Bowl)var3).method1(); ____________________________

 ((Fork)var3).method3(); ____________________________

 ((Fork)var5).method1(); ____________________________

 ((Spoon)var5).method1(); ____________________________

 ((Fork)var6).method2(); ____________________________

 ((Bowl)var6).method3(); ____________________________

4. Linked Lists, 15 points. Fill in the "code" column in the following table

 providing a solution that will turn the "before" picture into the "after"

 picture by modifying links between the nodes shown. You are not allowed to

 change any existing node's data field value and you are not allowed to

 construct any new nodes, but you are allowed to declare and use variables of

 type ListNode (often called "temp" variables). You are limited to at most

 two variables of type ListNode for each of the four subproblems below.

 You are writing code for the ListNode class discussed in lecture:

 public class ListNode {

 public int data; // data stored in this node

 public ListNode next; // link to next node in the list

 <constructors>

 }

 As in the lecture examples, all lists are terminated by null and the

 variables p and q have the value null when they do not point to anything.

 before after code

-----------------------+-----------------------+-------------------------------

 p | p->[3] |

 | |

 | |

 q->[1]->[2]->[3] | q->[1]->[2] |

 | |

-----------------------+-----------------------+-------------------------------

 | |

 | |

 p->[1] | p->[1] |

 | |

 | |

 q->[2]->[3] | q->[3]->[2] |

 | |

-----------------------+-----------------------+-------------------------------

 | |

 | |

 p->[1]->[2] | p->[4]->[2] |

 | |

 | |

 q->[3]->[4] | q->[1]->[3] |

 | |

 | |

 | |

 | |

-----------------------+-----------------------+-------------------------------

 | |

 | |

 p->[1]->[2]->[3] | p->[2]->[4] |

 | |

 | |

 q->[4]->[5] | q->[5]->[3]->[1] |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

-----------------------+-----------------------+-------------------------------

5. ArrayIntList, 10 points. Write a method called extractOddIndexes that

 constructs and returns a new ArrayIntList of values that contains the

 sequence formed by removing the values at odd indexes in an existing

 ArrayIntList of values. For example, suppose that an ArrayIntList called

 list stores the following sequence of values:

 [13, 5, 7, 12, 42, 8, 23, 31]

 If we make the following call on the method:

 ArrayIntList result = list.extractOddIndexes();

 After the call, list and result would store the following:

 list : [13, 7, 42, 23]

 result: [5, 12, 8, 31]

 Notice that the values that were at odd indexes have been moved to the new

 ArrayIntList in the same order as in the original list and that the list now

 stores just values that were at even indexes also in the same order as in

 the original list. The list might have an odd number of values, as in:

 [14, -64, 16, 88, 21, 17, -93, 81, 17]

 in which case the lists would store the following after the call:

 list : [14, 16, 21, -93, 17]

 result: [-64, 88, 17, 81]

 Notice that list stores five values while result stores only four. You are

 writing a method for the ArrayIntList class discussed in lecture:

 public class ArrayIntList {

 private int[] elementData; // list of integers

 private int size; // current # of elements in the list

 <methods>

 }

 You may use the zero-argument constructor for ArrayIntList and you may

 assume that it will construct an array of sufficient capacity to store the

 result. If the original list is empty, the result should be an empty list.

 You may call the ArrayIntList constructor, but otherwise you may not call

 any other methods of the ArrayIntList class to solve this problem. You are

 not allowed to define any auxiliary data structures other than the new

 ArrayIntList you are constructing (no array, String, ArrayList, etc). Your

 solution must run in O(n) time where n is the original list.

6. Stacks/Queues, 25 points. Write a method called mirrorSplit that takes a

 stack of integers as a parameter and that splits each value into two halves,

 adding new values to the stack in a mirror position. For example, suppose

 that a stack s stores the following values:

 bottom [14, 20, 8, 12] top

 If we make the following call:

 mirrorSplit(s);

 Then after the call, the stack should store the following values:

 bottom [7, 10, 4, 6, 6, 4, 10, 7] top

 ^ ^ ^ ^ ^ ^ ^ ^

 | | | +--+ | | |

 | | +--------+ | |

 | +---------------+ |

 +----------------------+

 mirror positions

 The first value 14 has been split in half into two 7s which appear in

 mirror positions (first and last). The second value 20 has been split in

 half into two 10s which appear in mirror positions (second and

 second-to-last). And so on. This example included just even numbers in

 which case you get a true mirror image. If the stack contains odd numbers,

 they should be split so as to add up to the original with the larger value

 appearing closer to the bottom of the stack. For example, if the stack

 stores these values:

 bottom [13, 5, 12] top

 After the call, it would store the following values:

 bottom [7, 3, 6, 6, 2, 6] top

 ^ ^ ^ ^ ^ ^

 | | +--+ | |

 | +--------+ |

 +--------------+

 mirror positions

 The first value 13 has been split into 7 and 6 with the 7 included as the

 first value and 6 included as the last value. The value 5 has been split

 into 3 and 2 with 3 appearing as the second value and 2 appearing as the

 second-to-last value. And so on.

 You are to use one queue as auxiliary storage to solve this problem. You

 may not use any other auxiliary data structures to solve this problem,

 although you can have as many simple variables as you like. You also may

 not solve the problem recursively. Your solution must run in O(n) time

 where n is the size of the stack. Use the Stack and Queue structures

 described in the cheat sheet and obey the restrictions described there

 (recall that you can't use the peek method or a foreach loop or iterator).

