
 

                  Solution to CSE143 Section #2 Problems 

 

1. One possible solution appears below. 

 

    public boolean isPairwiseSorted() { 

        for (int i = 0; i < size - 1; i += 2) { 

            if (elementData[i] > elementData[i + 1]) { 

                return false; 

            } 

        } 

        return true; 

    } 

 

2. One possible solution appears below. 

 

    public void mirror() { 

        int last = 2 * size - 1; 

        for (int i = 0; i < size; i++) { 

            elementData[last - i] = elementData[i]; 

        } 

        size *= 2; 

    } 

 

One possible solution appears below. 

 

    public ArrayIntList fromCounts() { 

        ArrayIntList result = new ArrayIntList(); 

        int size2 = 0; 

        for (int i = 0; i < size; i += 2) { 

            for (int j = 0; j < elementData[i]; j++) { 

                result.elementData[size2] = elementData[i + 1]; 

                size2++; 

            } 

        } 

        result.size = size2; 

        return result; 

    } 

 

4. Below is a list of style problems with the bad ArrayIntList: 

 

    class comment: Don't include Stuart's name, include just your name.  It 

    would also be helpful to include the date and your section or TA's name. 

    The class comment is meaningless.  Make some kind of attempt to describe 

    what the class is used for, as in "Class ArrayIntList can be used to store 

    a list of integers." 

 

    fields: Fields should be declared private.  The field comments are useless 

    because they are repeating the names of the fields.  Only include comments 

    if you can provide something beyond the field name.  The field called 

    "capacity" is not needed because it has the same value as 

    elementData.length. 

 

    class constant: It is improperly declared because it is missing "final". 

    It is also improperly named because the convention for constants is to use 

    all uppercase letters and underscore characters, as in DEFAULT_CAPACITY. 

 

    first constructor: It should have a comment and it should be using the 

    "this(...)" notation to call the other constructor.  It does not use the 

    class constant as it should. 

  



    second constructor: Comment doesn't mention the fact that it throws an 

    IllegalArgumentException when capacity is negative and the comment should 

    describe more about what it does.  The use of if/else is not appropriate. 

    The convention in Java is to throw exceptions with an if and then to have 

    the standard code follow without being inside an else. 

 

    size method: It has no comment. 

 

    get method: Comment doesn't mention what kind of exception is thrown and 

    doesn't describe what it does.  The for loop is not needed and makes the 

    method extremely inefficient, basically negating the benefit of using an 

    array (the random-access aspect of the array). 

 

    toString method: No comment.  Spacing is terrible.  Introduce spaces to 

    make your code more readable.  The indentation is also off on many lines. 

 

    contains method: The comment has implementation details, discussing the use 

    of a for loop and the fact that it is searching an array.  This method is 

    also highly redundant.  It should call indexOf.  The if/else after the loop 

    violates boolean zen (can simply return (count > 0)). 

 

    indexOf method: The comment has implementation details, talking about the 

    array and the size fields.  It also does not describe significant behavior: 

    the fact that the first occurrence is returned and that a -1 is returned if 

    not found.  The implementation is horrible.  It uses a variable called 

    index that is only needed because the loop goes backwards and then there is 

    a redundant test after the loop.  Even if you are going to use this index 

    variable, then initialize it to -1 and return it after the loop instead of 

    having the same test both inside and outside the loop (this fixes a minor 

    bug where it can return an index of 0 when the list is empty). 

 

    first add method: This is a good method. 

 

    second add method: The exception comments are good, but the description of 

    what it does is incomplete.  It doesn't say what happens to the old value 

    at the given index.  It shifts subsequent values to the right, which should 

    be described in the comment so that the client knows what it does.  Also, 

    the loop structure is very bad.  Code that is executed once either before 

    or after the repeated operation of a loop should appear outside the loop. 

    In particular, The exception checking should occur before the loop and the 

    "else" part that stores the value and increments size should appear after 

    the loop.  Because the exception testing is inside the loop, it never 

    throws an exception for index values greater than the size of the list. 

 

    capacity method: You are not allowed to add extra public functions to a 

    class that weren't part of the specification.  You can add private methods 

    that are part of the implementation, but not public methods. 

 

    remove method: The comment shouldn't discuss the implementation detail of 

    decreasing the size and it should mention what happens to the list when the 

    value is removed.  The subsequent values are shifted to the left. 

 

    addAll method: The comment does not mention the parameter (i.e., that the 

    values being appended come from the other ArrayIntList).  It constructs a 

    new array, which is not necessary, and the new array has a different 

    capacity than the original.  It also destroys the data in the other list. 

 

    overall: The lines of code to check for illegal indexes in get and remove 

    are redundant.  It would have been good to introduce a private method to 

    eliminate the redundancy. 


