

 Solution to CSE143 Section #2 Problems

1. One possible solution appears below.

 public boolean isPairwiseSorted() {

 for (int i = 0; i < size - 1; i += 2) {

 if (elementData[i] > elementData[i + 1]) {

 return false;

 }

 }

 return true;

 }

2. One possible solution appears below.

 public void mirror() {

 int last = 2 * size - 1;

 for (int i = 0; i < size; i++) {

 elementData[last - i] = elementData[i];

 }

 size *= 2;

 }

One possible solution appears below.

 public ArrayIntList fromCounts() {

 ArrayIntList result = new ArrayIntList();

 int size2 = 0;

 for (int i = 0; i < size; i += 2) {

 for (int j = 0; j < elementData[i]; j++) {

 result.elementData[size2] = elementData[i + 1];

 size2++;

 }

 }

 result.size = size2;

 return result;

 }

4. Below is a list of style problems with the bad ArrayIntList:

 class comment: Don't include Stuart's name, include just your name. It

 would also be helpful to include the date and your section or TA's name.

 The class comment is meaningless. Make some kind of attempt to describe

 what the class is used for, as in "Class ArrayIntList can be used to store

 a list of integers."

 fields: Fields should be declared private. The field comments are useless

 because they are repeating the names of the fields. Only include comments

 if you can provide something beyond the field name. The field called

 "capacity" is not needed because it has the same value as

 elementData.length.

 class constant: It is improperly declared because it is missing "final".

 It is also improperly named because the convention for constants is to use

 all uppercase letters and underscore characters, as in DEFAULT_CAPACITY.

 first constructor: It should have a comment and it should be using the

 "this(...)" notation to call the other constructor. It does not use the

 class constant as it should.

 second constructor: Comment doesn't mention the fact that it throws an

 IllegalArgumentException when capacity is negative and the comment should

 describe more about what it does. The use of if/else is not appropriate.

 The convention in Java is to throw exceptions with an if and then to have

 the standard code follow without being inside an else.

 size method: It has no comment.

 get method: Comment doesn't mention what kind of exception is thrown and

 doesn't describe what it does. The for loop is not needed and makes the

 method extremely inefficient, basically negating the benefit of using an

 array (the random-access aspect of the array).

 toString method: No comment. Spacing is terrible. Introduce spaces to

 make your code more readable. The indentation is also off on many lines.

 contains method: The comment has implementation details, discussing the use

 of a for loop and the fact that it is searching an array. This method is

 also highly redundant. It should call indexOf. The if/else after the loop

 violates boolean zen (can simply return (count > 0)).

 indexOf method: The comment has implementation details, talking about the

 array and the size fields. It also does not describe significant behavior:

 the fact that the first occurrence is returned and that a -1 is returned if

 not found. The implementation is horrible. It uses a variable called

 index that is only needed because the loop goes backwards and then there is

 a redundant test after the loop. Even if you are going to use this index

 variable, then initialize it to -1 and return it after the loop instead of

 having the same test both inside and outside the loop (this fixes a minor

 bug where it can return an index of 0 when the list is empty).

 first add method: This is a good method.

 second add method: The exception comments are good, but the description of

 what it does is incomplete. It doesn't say what happens to the old value

 at the given index. It shifts subsequent values to the right, which should

 be described in the comment so that the client knows what it does. Also,

 the loop structure is very bad. Code that is executed once either before

 or after the repeated operation of a loop should appear outside the loop.

 In particular, The exception checking should occur before the loop and the

 "else" part that stores the value and increments size should appear after

 the loop. Because the exception testing is inside the loop, it never

 throws an exception for index values greater than the size of the list.

 capacity method: You are not allowed to add extra public functions to a

 class that weren't part of the specification. You can add private methods

 that are part of the implementation, but not public methods.

 remove method: The comment shouldn't discuss the implementation detail of

 decreasing the size and it should mention what happens to the list when the

 value is removed. The subsequent values are shifted to the left.

 addAll method: The comment does not mention the parameter (i.e., that the

 values being appended come from the other ArrayIntList). It constructs a

 new array, which is not necessary, and the new array has a different

 capacity than the original. It also destroys the data in the other list.

 overall: The lines of code to check for illegal indexes in get and remove

 are redundant. It would have been good to introduce a private method to

 eliminate the redundancy.

