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Abstract. This paper presents a general probabilistic framework for multi-
sensor multi-class object recognition based on Conditional Random Fields (CRFs)
trained with virtual evidence boosting. The learnt representation models spatial
and temporal relationships and is able to integrate arbitrary sensor information
by automatically extracting features from data. We demonstrate the benefits of
modelling spatial and temporal relationships for the problem of detecting seven
classes of objects using laser and vision data in outdoor environments. Addition-
ally, we show how this framework can be used with partially labeled data, thereby
significantly reducing the burden of manual data annotation.

1 INTRODUCTION

Reliable object recognition is an important step for enabling robots to reason
and act in the real world. A high-level perception model able to integrate
multiple sensors can significantly increase the capabilities of robots in tasks
such as obstacle avoidance, mapping, and tracking.

We present a multi-modal object detector based on Conditional Random
Fields (CRFs). CRFs are discriminative models for classification of sequen-
tial (dependent) data, directly modelling the conditional probability p(x|z)
of hidden states x given observations z [4]. The proposed framework uses
the general applicability of CRFs as a unifying methodology to learn spa-
tial and temporal relationships between observations obtained with a laser
range-finder and a camera. The model is trained on data collected by a
moving vehicle to detect seven classes of objects in an urban environment.

By building on the recently developed Virtual Evidence Boosting (VEB)
algorithm [5], the algorithm described here is able to automatically select
features during the learning phase. The expert knowledge about the problem
is encoded as a selection of features capturing particular properties of the
data such as geometry, colour and texture. Given a labeled training set, VEB
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computes weights for each of these features according to their importance
in discriminating the data. Additionally, an extension of VEB for semi-
supervised learning is presented to address datasets with partially labeled
samples.

2 RELATED WORK

Within the robotics community, researchers have recently developed repre-
sentations of environments using more than one modality. In [9], a 3D laser
scanner and loop closure detection based on photometrical information are
brought together in the Simultaneous Localisation and Mapping (SLAM)
framework. This approach does not generate a semantic representation of
the environment which can be obtained from the same multi-modal data us-
ing the approach proposed here. In [11], a robust landmark representation is
created by probabilistic compression of high dimensional vectors containing
laser and camera information. This representation is used in a SLAM sys-
tem and updated on-line when a landmark is re-observed. However, it does
not readily allow the inference of a landmarks’ class which could contribute
to higher level reasoning.

Object recognition based on laser and video data has been demonstrated
in [7]. Using a sum rule, this approach combines the outputs of two classi-
fiers, each of them being assigned to the processing of one type of data. In
contrast, we learn a CRF classifier with the VEB algorithm which performs
joint feature selection in both datasets in order to minimise the classification
error on training data. The VEB algorithm can, as it is, learn a classifier
given as many data types as available and is not restricted to laser and
vision inputs [5].

In robotics, CRFs have been applied successfully in the context of seman-
tic place labeling [3] and object recognition [6]. However, neither of these
approaches incorporated multiple sensor modalities and performed feature
selection via VEB training. In previous work, we showed how cars can be
detected in laser and vision data using CRFs [1]. Here, we show how such a
system can additionally perform semi-supervised learning and demonstrate
its applicability to multi-class scenarios. The key contribution of this work
is to present a probabilistic model for multi-class object recognition which
integrates spatial and temporal correlations and can be learnt given any
types of partially labeled data.

3 Conditional Random Fields

This section provides a brief description of conditional random fields (CRF)
and virtual evidence boosting (VEB), an extremely efficient way of learning
CRF parameters for arbitrary feature functions (see [5] and [14] for more
information).
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3.1 Model Description and learning

Conditional random fields (CRF) are undirected graphical models developed
for labeling sequence data [4]. CRFs directly model p(x|z), the conditional
distribution over the hidden variables x given observations z. CRFs factorize
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where Z(z) = > [[.cc ¢c(z,%c) is the normalizing partition function. C
is the set of cliques in the CRF graph. The ¢. are clique potentials, which
are functions that map variable configurations to non-negative numbers. In-
tuitively, these potentials capture the “compatibility” among the variables
in the clique: the larger the potential value, the more likely the configura-
tion. Potentials are constrained to log-linear functions, and learning a CRF
requires learning the weights of these functions.

Even though CRFs can handle extremely high-dimensional and depen-
dent feature vectors, the adequate modeling of continuous observations is
not straightforward. Recently, Liao and colleagues introduced virtual evi-
dence boosting (VEB), which learns an appropriate discretisation of con-
tinuous observations along with the weight parameters of the model [5]. Tt
does this applying the logitboost learning algorithm to both the observations
and connections of the CRF. VEB has demonstrated superior performance
on both synthetic and real data. The automatic observation discretisation
makes VEB extremely flexible and allows the incorporation of arbitrary,
continuous and discrete observations.

Through VEB, a CRF model can not only be learnt with fully labeled
data but also with partially labeled data. In this context, unlabeled data
is ignored when learning the logitboost classifiers for local observations.
However, the unlabeled data is used to estimate the distributions over all
hidden states in the CRF, which can have significant impact on the learning
result, as we will show in the experimental results.

3.2 Inference

Inference in CRFs consists either in estimating the marginal distribution of
each hidden variable x; or in defining the most likely configuration of all
hidden variables x (i.e., MAP estimation), based on their joint conditional
probability 1. Both tasks can be solved using BP.

BP provides exact results in graphs with no loops, such as trees or poly-
trees. However, as the models used in our approach contain various loops,
we apply loopy belief propagation, an approximate inference algorithm that
is not guaranteed to converge to the correct probability distribution [8].
Fortunately, in our experiments, this approximation is reasonably accurate
even when loopy BP failed to converge (the maximum number of iterations
is reached).
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4 CRFs FOR OBJECT RECOGNITION

This section describes the deployment of the CRF framework to perform
object recognition. This paper focuses on performing object detection in an
outdoor urban environment given laser data and monocular colour images.
Fig. 1 shows two examples of laser scans projected into their corresponding
image according to the procedure described in [16]. The CRF framework
is applied by converting each scan into a linear chain CRF, as displayed
in Fig. 2. Each node of this CRF represents a laser return. The hidden
variable to be estimated is the class of the return. The features z used in
our object recognition CRF model are now described. We then explain how
the CRF model of a scan is further incorporated into a more elaborated
representation which takes temporal relationships into account.

Fig. 1. Two examples of laser scans and associated images. Laser returns are projected into
the image and displayed with different markers indicating their label: a yellow + means class

“car”, a magenta "~ “trunk”, a cyan * “foliage”, a green star “people”, a blue O “wall”, yellow dot

“grass” and a red o “other”.

4.1 One time slice model

To jointly estimate all the labels of a laser scan, features z are extracted from
laser and camera data. Two feature functions are used in the experiments:
geometric feature functions and visual feature functions. We now detail each
of them.

Geometric laser features

These features capture geometric properties of the objects detected by the
laser scan. While local shape can be captured by various types of features,
we chose to implement simple shape features measuring distance, angle, and
number of out of range returns between two beams. The resulting feature
function has the form
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fgeo(ia ZA) = concat (fdist (ia ZA)a fangle(ia ZA)7 foor (i7 ZA)) , (2)

where i indexes one of the returns in scan z 4. The concat function performs a
concatenation operation, and f,., refers to the out-of-range feature function.
The resulting function fee, (7, 24) returns a vector of dimensionality 213, as
specified next.

To generate distance features, we compute for each point z4; in scan
A its distance to other points in scan A. These other points are chosen
based on their relative indices in the scan. With k& being an index offset, the
distance feature corresponding to points z4 ; is computed as follows

faise (4, k,24) = 24,0 — 24,i45]) - (3)

In our implementation this feature is computed for index offsets k varying
from —10 to +10.

Another way to consider local shape is by computing the angles of points
w.r.t their neighbours. The angle of a point z4; is defined as the angle
between the segments connecting a point ¢ to its neighbours. With £ and {
indicating and index offset, this feature is defined as:

fangte (0, K, 1, 24) = || £ (Zai—kzai, Zaiza40) || - 4)

As with the distance feature, we compute a set of angles by varying k& and
[ from —10 to +10.

The out of range feature counts the number of “out of range” beams
between pairs of successive returns. The idea is to take into account open
areas implicitly detected by the laser scan.

Visual features

In addition to geometrical information, a CRF model learnt with the VEB
algorithm can seamlessly integrate vision data provided by a monocular
colour camera. The first step consists of registering the vision sensor and the
laser range-finder with respect to each other using the calibration procedure
described in [16]. Laser returns can then be projected in the corresponding
image. The visual features extracted from this image capture colour and
texture information in the window (or ROI) centred around the laser return.
The edge length of the window is set to be 1 metre for a range of 4 metres.
This size is converted into number of pixels using the camera’s intrinsic
parameters and adjusted depending on the range measurement. Changing
the size of the extracted patch as a function of range is a procedure to cope
with the variation in scales as an object moves from the background to the
foreground of the image. It was verified that the use of a size varying window
improves the experimental results by 4%.
The visual feature function has the form

frisu (pia pi—l) = concat (ftexture (pia pi—1)7 fcolour(pi, pi—l)) s (5)
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where p; is the image patch corresponding to return i. fiexeure(pi, pi—1) re-
turns a vector containing the steerable pyramid [13] coefficients of image
patch 4, and the difference between the steerable pyramids computed at
patch ¢ and at patch i — 1. foojour(pi, pi—1) returns a vector containing the
3D RGB colour histogram of patch ¢ and of its difference with patch ¢ — 1.
Only neighbour ¢ — 1 is used to limit the dimensionality of fyi, which is
already over 7000.

Fig. 2. (a) Graphical model of a linear chain CRF for one time slice object recognition. Each
hidden node x; represents one (non out of range) return in a laser scan. The nodes z; represent
the features extracted from the laser scan and the corresponding camera image. (b) Graphical
model of the spatio-temporal classifier. Nodes x; j represent the i-th laser return observed at
time j. Temporal links are generated between time slices based on the ICP matching algorithm.

4.2 Recognition over time

Due to the sequential nature of robotics applications, a substantial amount
of information can be gained by taking into account prior and posterior data
when available. We now present a model that achieves temporal smoothing
in addition to exploiting the geometric structure of laser scans. This model
is displayed in Fig. 2.

In this work, the temporal connections are instantiated such that they
represent the associations found by the Iterative Closest Point (ICP) match-
ing algorithm [17]. The pairwise potentials assigned to these connections are
set to identity. Mathematically, @remporal (Xi,X;) = 0(X;,%;), where ¢ is the
indicator function. This set-up is justified by the fact that ICP associates
returns that were generated by the same physical point. It follows that the
integration of temporal information does not require additional learning.

Corresponding to different variants of temporal state estimation, our
spatio-temporal model can be deployed to perform three different types of
estimation.

e Off-line smoothing: All scans in a temporal sequence are connected us-
ing ICP. BP is then run in the whole network to estimate the class of
each laser return in the sequence. During BP, each node sends to its
neighbours the messages through structural and temporal links (vertical
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and horizontal links, respectively, in Fig. 2). In our experiments, BP is
run for 100 iterations.

e On-line fixed-lag smoothing: Here, scans are added to the model in an
on-line fashion. To label a specific scan, the system waits until a certain
number of future scans becomes available, and then runs BP taking past
and future scans into account.

e On-line filtering: In this case the spatio-temporal model only includes
scans up to the current time point.

5 EXPERIMENTS

The experiments were performed using outdoor data collected with a mod-
ified car travelling at 0 to 40 km/h. The car drove along several loops in
a university campus which has structured areas with buildings, walls and
cars, and unstructured areas with bush, trees and lawn fields. The overall
dataset contains 4500 images which represents 20 mins of logging. Laser
data was acquired at a frequency of 4Hz using a SICK laser. The models
presented in Sec. 4 are used to estimate the class of each return in the laser
scans.

Results on a binary classification problem are first presented to facilitate
the description of the spatial and temporal dependencies’ role in the model
(some of the binary classification results were already presented in [1], and
are shown here for completeness). We then show how the possibility of
performing semi-supervised learning can reduce the hand labelling effort
by more than half. We finally present results on a classification problem
involving seven classes.

5.1 Binary classification

In this first set of experiments we consider two classes: “car” and “other”. Ta-
ble 1 summarises the experimental results in terms of classification accuracy.
The accuracies are given in percentages and computed using 10-fold cross
validation on a set of 100 manually labeled scans. For each cross validation,
different models were trained with 200 iterations of VEB. VEB was com-
puted allowing learning of pairwise relationships only after iteration 100.
We found that this procedure increases the weights of local features and
improves classification results.

Training set geo only|visu only|geo+visu|geo+visu
Number of time 1 1 1 F10
slices in the model
CRF 68.93 81.79 83.26 88.08
logitboost 67.64 81.52 83.22 X

Table 1. Binary classification accuracy (in %)
The first line of Table 1 indicates the types of features used to learn
the classifier. Four different configurations were tested: first using geometric
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Classifier logitboost| CRF|CRF
(training set = geo-+visu)
Number of time 1 1 |F 10
slices in the model
String Edit Distance 9.5 5.6 | 2.4

Table 2. String Edit Distances in the binary classification case

features only, second containing visual features only, third containing both
geometric and visual features, and fourth with geometric and visual fea-
tures integrated over a period of 10 times slices. The second line of table 1
indicates the number of time slices in the network used to perform classifi-
cation. “1” means that a network as presented in Fig. 3(a) was used. “F 10
” refers to the classifier shown in Fig. 3(b) instantiated with 10 unlabeled
scans prior and posterior to the labeled scan.

Two types of classifiers were used: CRFs and logitboost classifiers. CRFs
take into account the neighbourhood information to perform classification
(Fig. 3(a)). Logitboost learns a classifier that only supports independent
classification of each laser return without neighbourhood information [2].
Logitboost is used here for comparison purposes to investigate the gain in
accuracy obtained with a classifier that takes into account the structure of
the scan.

The first three columns of Table 1 show that classification results are
improving as richer features are used for learning. The first three columns
also show that the CRF models lead to slightly more accurate classification.

In addition, as presented in Sec. 4.2, a CRF model can readily be ex-
tended into a spatio-temporal model. The latter leads to an improvement of
almost 5% in classification accuracy (right column of table 1). This shows
that the proposed spatio-temporal model, through the use of past and pos-
terior information, performs better for object recognition. The cross in the
bottom right of the table refers to the fact that logitboost does not allow
the incorporation of temporal information in a straightforward manner.

CRF models also generate better segmentation of cars in laser scans. This
can be quantified using the metric called String Edit Distance (SED)[12]. By
definition the SED is the smallest number of insertions, deletions, and sub-
stitutions required to change one string into another. Intuitively, this metric
tells whether classification results capture the true arrangement of objects in
a scene. It penalises series of estimates that do not respect the true sequence
of blocks with the same label. For example, given the ground truth “ccooc-
co0” (where ’¢’ and "o’ stand for ’car’ and ’other’ respectively), the estimated
sequence “cocococo” is more penalised (larger SED) than “ooccoocc”. This
is because the latter estimate is more similar to the true sequence in terms
of blocks of returns with the same label.

Table 2 presents classification results in terms of SEDs. The numbers
show that the spatio-temporal model gives the best results in terms of clas-
sification accuracy as well as in terms of SEDs. The CRF classifiers, through
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their ability to represent spatial and temporal dependencies, are better at
capturing the true arrangement of the observed objects. This property will
be beneficial when the CRF models are applied to image segmentation prob-
lems (which is beyond the scope of this paper). These results resemble the
results presented in [3] where it is shown that a CRF based approach is
better in capturing the structure of indoor environments.

In order to gauge the difficulty of the task, we also performed logitboost
classification using visual Haar features, which results in the well-known
approach proposed by Viola-Jones [15]. The accuracy of this approach is
77.09%, which shows that even our single time slice approach (83.26%) out-
performs the reference work of Viola & Jones. The improvement in accuracy
obtained by the CRF model comes from its aptitude to capture neighbor-
hood relationships and the use of richer features.

5.2 Semi-supervised learning

Fig. 3 presents binary classification results obtained with models learnt on
datasets containing a progressively increasing amount of unlabeled data.
Fig. 3(a) shows that adding unlabeled data while maintaining the number
of labeled returns constant improves classification accuracy. This shows that
the proposed framework allows to perform semi-supervised learning. In Fig.
3(b) and 3(c) the total number of scans used is maintained constant and
the number of unlabeled returns is increased. These two plots show that
the original accuracy is maintained with only 40% of labeled data. As a
consequence, the proposed model enables non negligible economy in the
manual labelling process.

classification accuracy

3

Classification accuracy

60 B %0

10 20 3‘0 40 5‘0 10 20 3 40 S0 60 70 )
number of added unlabeled scans % unlabeled training pts % unlabeled training pts

(a) (b) (c)

Fig. 3. Semi-supervised learning behaviour for the binary classification case. Each point in
the three plots corresponds to the average of 10 one-time-slice models learnt by cross validation.
(a) The number of labeled scans is 30. As more unlabeled scans are added to the training set,
labeled returns are spread evenly across the training set while their total number is maintained
constant. (b) and (c) The training sets contain 90 scans and the testing sets contain 10 scans.
The x coordinate means that x% of randomly chosen returns in each of the 90 scans are

unlabeled.
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Labels'

Estimates

people: O wa

Fig. 4. Example of results obtained with the seven classes classifier. The legend is indicated
in the bottom of each image. The top line of markers indicate the manually provided ground
truth labels of each scan return directly below. Each scan return projected into the image is

displayed with a marker indicating its estimated label.

5.3 Multi-class classification

In this set of experiments, seven classes of objects are involved: car, trunk,
foliage, people, wall, grass, and other. The class “trunk” is used since the
laser range finder was mounted on the front of the car and was mostly
sensing trees at the level of their trunk. The class “foliage” refers to bushes,
high grass and the top part of trees.

The classification results obtained with fully labeled data are sum-
marised in table 3. The values show that the spatio-temporal model (right
column) gives the best results in terms of classification accuracy as well as
in terms of SED.

Classifier logitboost| CRF | CRF
Number of time 1 1 |[F10
slices in the model
Accuracy [%] 57.27 159.02(60.73
String Edit Distance 5.9 2.6 | 0.9

Table 3. Multi-class classification results

Fig. 4 shows a few examples of classification results obtained with the
multi-class classifier. It can be seen that most of the returns are correctly
identified as belonging to one of the classes car, foliage, wall or people.

Inference in a one time slice CRF takes about 7 seconds on a Intel Xeon
2.33GHz desktop computer. Inference in the spatio-temporal model takes
on average 27 seconds per scan. Our implementation of the inference is not
very efficient and we believe that an optimized implementation will make
it possible to run our system in real time applications. Learning the model
requires about three hours and can be performed off-line.
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6 CONCLUSIONS AND FUTURE WORK

We have presented a general probabilistic model for object recognition that
incorporates spatial and temporal dependencies. Through the use of the
VEB learning algorithm, we generate a CRF model that can combine any
type of data by selecting features according to their relevance with respect
to the classification task.

In future work we will improve the VEB algorithm by incorporating
pairwise potentials that take into account local observations in addition
to estimated labels, thereby appropriately adapting their smoothing effect.
Furthermore, we intend to replace ICP matching by CRF-matching [10],
an approach that performs probabilistic scan matching using conditional
random fields. We believe that CRF-matching, when incorporated into our
spatio-temporal model, will provide more robust estimation of data associ-
ations, especially when closing loops. Finally, we will investigate the incor-
poration of improved geometric features, such as lines and corners.
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