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Control of planetary exploration rovers presents several im
portant challenges for research in automated planning. Be
cause of difficulties inherent in communicating with devices
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Abstract

We consider the problem of optimal planning
in stochastic domains with resource constraints,
where resources are continuous and the choice of
action at each step may depend on the current
resource level. Our principal contribution is the
HAO* algorithm, a generalization of the AO* algo-
rithm that performs search in a hybrid state space
that is modeled using both discrete and continu-
ous state variables. The search algorithm leverages
knowledge of the starting state to focus computa-
tional effort on the relevant parts of the state space.
We claim that this approach is especially effective
when resource limitations contribute to reachabil-
ity constraints. Experimental results show its ef-
fectiveness in the domain that motivates our re-
search — automated planning for planetary explo-
ration rovers.

Introduction

possible[Pederseret al, 2004. As a result, it is expected
that space scientists will request a large number of potential
tasks for future rovers to perform, more than may be feasible,
presenting an oversubscribed planning problem.

Working in this application domain, our goal is to provide a
planning algorithm that can generate reliable contingent plans
that respond to different events and action outcomes. Such
plans must optimize the expected value of the experiments
conducted by the rover, while being aware of its time, energy,
and memory constraints. In particular, we must pay atten-
tion to the fact that given any initial state, there are multiple
locations the rover could reach, and many experiments the
rover could conductmost combinations of whicare infea-
sible due to resource constraints. To address this problem
we need a faithful model of the rover’s domain, and an al-
gorithm that can generate optimal or near-optimal plans for
such domains. General features of our problem include: (1)
a concrete starting state; (2) continuous resources (including
time) with stochastic consumption; (3) uncertain action ef-
fects; (4) several possible one-time-rewards, only a subset of
which are achievable in a single run. This type of problem is
of general interest, and includes a large class of (stochastic)
logistics problems, among others.

Past work has dealt with some features of this problem.
lated work on MDPs with resource constraints includes the

on other planets, remote rovers must operate autonomous X . .
over substantial periods of tinf8resinaet al, 2004. The odel of constrained MDPs developed in the OR community
planetary surfaces on which they operate are very uncertairftman, 1999. A constrained MDP is solved by a linear

environments: there is a great deal of uncertainty about thBrgram that includes constraints on resource consumption,

duration, energy consumption, and outcome of a rover’s acand finds the best feasible policy, given an initial state and re-
tions. Currently, instructions sent to planetary rovers are irpource allocation. A drawback of the constrained MDP model

the form of a simple plan for attaining a single goal (e.g.,'S that it does not include resources in the state space, and
photographing some interesting rock). The rover attempt&US; @ policy cannot be conditioned on resource availability.
to carry this out, and, when done, remains idle. If it fails Moreover, it does not model stochastic resource consumption.
early on, it makes no attempt to recover and possibly achievi! the area of decision-theoretic planning, several techniques
an alternative goal. This may have a serious impact on midlave been proposed to handle uncertain continuous variables
sions. For example, it has been estimated that the 1997 Mak€-g.[Fengetal, 2004; Younes and Simmons, 2004; Guestrin
Pathfinder rover spent between 40% and 75% of its time doSt @l- 2004). Smith 2004 and van den Briel at. 2004 con-

ing nothing because plans did not execute as expected. TifHer the problem of over-subscription planning, i.e., plan-

current MER roversdka Spirit and Opportunity) require an  NN9 with a large set_of goals which i_s not entirely achievable.
average of 3 days to visit a single rock, but in future missions,] €Y Provide techniques for selecting a subset of goals for

multiple rock visits in a single communication cycle will be Which to plan, but they deal only with deterministic domains.
Finally, Meulealet al. 2004 present preliminary experiments

towards scaling up decision-theoretic approaches to planetary
rover problems.

* Research Institute for Advanced Computer Science.
T QSS Group Inc.



Our contribution in this paper is an implemented algorithm,notational convenience, we model the discrete component as
Hybrid AO* (HAO*), that handles all of these problems to- a single variable:.
gether: oversubscription planning, uncertainty, and limited A Markov states € S is a pair(n,x) wheren € N is the
continuous resources. Of these, the most essential featurdiscrete variable, and = (z;) is a vector of continuous vari-
of our algorithm are its ability to handle hybrid state-spacesables. The domain of each is an intervalX; of the real line,
and to utilize the fact that many states are unreachable due tndX = ), X; is the hypercube over which the continuous
resource constraints. variables are defined. We assume an exgpildfial state, de-
In our approach, resources are included in the state descripoted (ng, xo), and one or more absorbirtgrminal states
tion. This allows decisions to be made based on resourc@ne terminal state corresponds to the situation in which all
availability, and it allows a stochastic resource consumptiorgoals have been achieved. Others model situations in which
model (as opposed to constrained MDPs). Although this inresources have been exhausted or an action has resulted in
creases the size of the state space, we assume that the vadiggne error condition that requires executing a safe sequence
functions may be represented compactly. We use the worky the rover and terminating plan execution.
of Feng etal. (2004) on piecewise constant and linear ap- Actionscan have executability constraints. For example,
proximations of dynamic programming (DP) in our imple- an action cannot be executed in a state that does not have its
mentation. However, standard DP does not exploit the factinimum resource requirementsl,, (x) denotes the set of
that the reachable state space is much smaller than the comctions executable in state, x).
plete state space, especially in the presence of resource con-state transition probabilitiesare given by the function
straints.  Our contribution is to show how to use the for-py(y | 5,a), wheres = (n, x) denotes the state before action
ward heuristic search algorithm called AQF’earl, 1984, a ands’ = (TL/, X/) denotes the state after acti@m|50 called
Hansen and Zilberstein, 20pto solve MDPs with resource the arrival state. Followin§Fenget al., 2004, the probabili-
constraints and continuous resource variables. Unlike DRjes are decomposed into:
forward search keeps track of the trajectory from the start ) )
state to each reachable state, and thus it can check whether the? the discrete marginalBr(n’|n, x, ). For all (n, x, a),
trajectory is feasible or violates a resource constraint. This al- Yowen Pr(n[n,x,a) =1
lows heguristic search to prune infeasible trajectories and can o the continuous conditionalBr(x’|n, x, a,n’). For all
dramatically reduce the number of states that must be consid- (n,x,a,n"), [ Pr(x'|n, x, a,n')dx’ = 1
ered to find an optimal policy. This is particularly important T JateX B '
in our domain where the discrete state space is huge (expdwy transition that results in negative value for some contin-
nential in the number of goals), yet the portion reachable fromuous variable is viewed as a transition into a terminal state.
any initial state is relatively small because of the resource The reward of a transition is a function of the arrival
constraints. Itis well-known that heuristic search can be moratate only. More complex dependencies are possible, but
efficient than DP because it leverages a search heuristic arhis is sufficient for our goal-based domain models. We let
reachability constraints to focus computation on the relevank,,(x) > 0 denote theeward associated with a transition to
parts of the state space. We show that for problems with restate(n, x).
source constraints, this advantage can be even greater thanin our application domain, continuous variables model
usual because resource constraints further limit reachabilitynon-replenishable resources. This translates into the general
The paper is structured as follows: In Section 2 we describ@assumption that the value of the continuous variables is non-
the basic action and goal model. In Section 3 we explain oumncreasing. Moreover, we assume that each action has some
planning algorithm, HAO*. Initial experimental results are minimum positive consumption of at least one resource. We
described in Section 4, and we conclude in Section 5. do not utilize this assumption directly. However, it has two
implications upon which the correctness of our approach de-
2 Problem Definition and Solution Approach pends: (1) the values of the continuous variables are a-priori
) bounded, and (2) the number of possible steps in any execu-
2.1 Problem Formulation tion of a plan is bounded, which we refer to by saying the
We consider a Markov decision process (MDP) with bothproblem has dounded horizon Note that the actual num-
continuous and discrete state variables (also calldd/-a ber of steps until termination can vary depending on actual
brid MDP [Guestrinet al, 2004 or Generalized State resource consumption.
MDP [Younes and Simmons, 20)4 Each state corresponds ~ Given an initial statgng,xo), the objective is to find a
to an assignment to a set of state variables. These variablgslicy that maximizes expected cumulative rewhrth our
may be discrete or continuous. Continuous variables typicallapplication, this is equal to the sum of the rewards for the
represent resources, where one possible type of resourcegeals achieved before running out of a resource. Note that
time. Discrete variables model other aspects of the state, irthere is no direct incentive to save resources: an optimal solu-
cluding (in our application) the set of goals achieved so far bytion would save resources only if this allows achieving more
the rover. (Keeping track of already-achieved goals ensuregoals. Therefore, we stay in a standard decision-theoretic
a Markovian reward structure, since we reward achievemerftamework. This problem is solved by solving Bellman’s op-
of a goal only if it was not achieved in the past.) Although
our models typically contain multiple discrete variables, this  Our algorithm can easily be extended to deal with an uncertain
plays no role in the description of our algorithm, and so, forstarting state, as long as its probability distribution is known.



timality equation, which takes the following form: or time is remaining. To address this problem and still find
an optimal solution, we associate a value estimate with each

V2(x) =0, of the Markov states in an aggregate. That is, we attach to
each search node a value function (function of the continu-
Vitl(x) = max Z Pr(n' |,n,x,a) ous variables) instead of the simple scalar value used by stan-
a€An () | ey @ gard AO*. Following the approach dFenget al., 2004, this

value function can be represented and computed efficiently
/ Pr(x’ | n,x,a,n') (R (x') + V(X)) dx'| . due to the continuous nature of these states and the simplify-
x! ing assumptions made about the transition functions. Using
Note that the index represents the iteration time-stepof ~ these value estimates, we can associate different actions with
DP, and does not necessarily correspond to time in the plarglifferent Markov states within the aggregate state correspond-
ning problem. The duration of actions is one of the biggesing to a search node.
sources of uncertainty in our rover problems, and we typically In order to select which node on the fringe of the search

model time as one of the continuous resoutces graph to expand, we also need to associate a scalar value with
_ each search node. Thus, we maintain for a search node both
2.2 Solution Approach a heuristic estimate of the value function (which is used to

Fenget al. describe a dynamic programming (DP) algorithm make_action selections), and a heuristic estimate of the prior-
that solves this Bellman optimality equation. In particular, ity which is used to decide which search node to expand next.
they show that the continuous integral owércan be com- Details are given in the following section.
puted exactly, as long as the transition function satisfies cer- We note that LAO*, a generalization of AO*, allows for
tain conditions. This algorithm is rather involved, so we will policies that contain “loops” in order to specify behavior over
treat it as a black-box in our a|gorithm_ In fact, it can be an infinite horizor{Hansen and Zilberstein, 20D]We could
replaced by any other method for carrying out this compu-Use similar ideas to extend LAO* to our setting. However,
tation. This also simplifies the description of our algorithm We need not consider loops for two reasons: (1) our prob-
in the next section and allows us to focus on our contribulems have a bounded horizon; (2) an optimal policy will not
tion. We do explain the ideas and the assumptions behind tHeontain any intentional loop because returning to the same
algorithm of Fencgt al. in Section 3.3. discrete state with fewer resources cannot buy us anything.
The difficulty we address in this paper is the potentially Our current impl_ementation assumes any loop is intentional
huge size of the state space, which makes DP infeasibleand discards actions that create such a loop.
One reason for this size is the existence of continuous vari-
ables. But even if we only consider the discrete compo-3 Hybrid AO*

nent of the state space, the size of the state space is eXpR'simpIe way of understanding HAO* is as an AO* variant

nential in the number of propositional variables comprising, o e states with identical discrete component are expanded
the discrete component. To address this issue, we use for-

e . . In unison. HAO* works with two graphs:
ward heuristic search in the form of a novel variant of the
AO* algorithm. Recall that AO* is an algorithm for search- e Theexplicit graphdescribes all the states that have been
ing AND/OR graphs[Pearl, 1984; Hansen and Zilberstein, ~ generated so far and the AND/OR edges that connect
2001). Such graphs arise in problems where there are choices them. The nodes of the explicit graph are stored in two
(the OR components), and each choice can have multiple con-  lists: OPEN and CLOSED.

under uncertainty. AO* can be very effective in solving such GREEDY in the algorithms, is a sub-graph of the ex-

planning problems when there is a large state space. One rea- pjicit graph describing the current optimal policy.

son for this is that AO* only considers states that are reach- o , . , ,
able from an initial state. Another reason is that given arl Standard AO*, a single action will be associated with each

informative heuristic function, AO* focuses on states that arg'0d€ in the greedy graph. However, as described before, mul-
ple actions can be associated with each node, because dif-

reachable in the course of executing a good plan. As a resul?, . . ,
AO* often finds an optimal plan by exploring a small fraction erent actions may be optimal for different Markov states rep-

of the entire state space. resented by an aggregate state.

The challenge we face in applying AO* to this problem is
the challenge of performing state-space search in a contin‘of'l Dfata Structures
uous state space. Our solution is to search imggregate ~ The main data structure represents a search nodecon-
state spacehat is represented by a search graph in whicHains:
there is a node for each distinct value of the discrete compo- ¢ The value of the discrete state. In our application these
nent of the state. In other words, each node of our search  are the discrete state variables and set of goals achieved.
graph represents a region of the continuous state space in . . : : o
which the discrete value is the same. In this approach, dif- * Pointers to its parents and children in the explicit and
ferent actions may be optimal for different Markov states in  9réedy policy graphs.
the aggregate state associated with a search node, especiallp P, (-) —a probability distribution on the continuous vari-
since the best action is likely to depend on how much energy  ables in node:. For eachx € X, P, (x) is an estimate



of the probability density of passing through statex) 1: Create the root node, which represents the initial state.
under the current greedy policy. It is obtained frp- 2: P,, = initial distribution on resources.
gressinghe initial state forward through the optimal ac-| 3: V,,, = 0 everywhere irX.

tions of the greedy policy. With each,, we maintain 4: gp, = 0.

the probability of passing through under the greedy : OPEN= GREEDY = {n}.

policy: : CLOSED= 0.

: while OPENN GREEDY # () do

5
6
7
M(P,) = P, dx .
(Fr) /xex n(x)dx 8. n = argmax,/cOPENNGREEDY (Jn’)-
9
0

e H,(-) —the heuristic function. For eache X, H,(x)
is a heuristic estimate of the optimal expected reward1 )

Move n from OPEN to CLOSED.
for all (a,n’) € A x N not expanded yet im and
reachable undeP,, do

from state(n, x). 11:  ifn’ ¢ OPEN U CLOSED then

e V,(-) —the value function. At the leaf nodes of the ex{ 12: Create the data structure to represenand add
plicit graph,V,, = H,,. At the non-leaf nodes of the the transitionn, a, n’) to the explicit graph.
explicit graph,V,, is obtained by backing up thé func- 13: GetH,, .
tions from the descendant leaves. If the heuristic fung-14: V. = H, everywhere inX.
tion H,. is admissible in all leaf nodes’, thenV,,(x) 15: if n’ is terminal:then
is an upper bound on the optimal reward to come fromié: Add n’ to CLOSED.
(n,x) for all x reachable under the greedy policy. 17 else

e g, — a heuristic estimate of the increase in value of thel8: Add n’ to OPEN. _ N
greedy policy that we would get by expanding node 19: else ifn’ is not an ancestor of in the explicit graph
If H, is admissible thew,, represents an upper bound then L . .
on the gain in expected reward. The gajnis used to 200 Add the trar/15|t|or(n, a,n’) to the epr|C|t graph|
determine the priority of nodes in the OPEN ligy,(= 0 |21  if some pair(a, n") was expanded at previous step)
if nis in CLOSED), and to bound the error of the greedy then .
solution at each iteration of the algorithm. 22: UpdateV/,, for the expanded node and some of its

ancestors in the explicit graph, with Algorithm 2.

%)

" Note that some of this information is redundant. Never-os.  pgate P, andg, using Algorithm 3 for the node
eless, it is convenient to maintain all of it so that the algo- n’ that are children of the expanded node or of a rjode
rithm can easily access it. HAO* uses the customary OPEN where the optimal decision changed at the previous
and CLOSED lists maintained by AO*. They encode the ex- step ¢2). Move every node”’ € CLOSED where
plicit graph and the current greedy policy. CLOSED contains P changed back into OPEN.

expanded nodes, and OPEN contains unexpanded nodes and

nodes that need to be re-expanded. Algorithm 1: Hybrid AO*

3.2 The HAO* Algorithm ) )

. . : and all arrival states’ that can result from such a transi-
Algonthml 1 prgsents_the main procedure. The crucial steP§on Pr(n’ | n,x,a) > 0)2 If n was previously expanded
are described in detail below. (i.e. it has been put back in OPEN), only actions and arrival
Expanding a node (lines 10 to 20)At each iteration, HAO*  nodes not yet expanded are considered. Inliheve check
expands the open nodewith the highest priorityg,, in the  whether a node has already been generated. This is not nec-
greedy graph. An important distinction between AO* andessary if the graph is a tree (i.e., there is only one way to get
HAO* is that in the latter, nodes are often only partially to each discrete statg)In line 15, a noden’ is terminal if
expanded (i.e., not all Markov states associated with a disA0 action is executable in it (because of lack of resources).
crete node are considered). Thus, nodes in the CLOSEIN our application domain each goal pays only once, thus the
list are sometimes put back in OPEN (lig8). The reason nodes in which all goals of the problem have been achieved
for this is that a Markov state associated with this node, thag@re also terminal. Finally, the test in lin@ prevents loops in
was previously considered unreachable, may now be reaclthe explicit graph. As discussed earlier, such loops are always
able. Technically, what happens is that as a result of findinguboptimal.

a new pat'h to a node;, th.e proba}bility distributi.o'n over it iSUpdating the value functions (lines 22 to 23)As in stan-
updated (line3), possibly increasing the probability of some dard AO*, the value of a newly expanded node must be up-

Markov state from 0 to some positive value. This process i% ; . LA, ; ;
: g : ated. This consists of recomputing its value function with
illustrated in Figure 1. Thus, while standard AO* eXpandsBellman’s equations (Eqn. 1), based on the value functions of

only tip nodes, HAO* sometimes expands nodes that wer ; ; O
moved from CLOSED to OPEN and are “in the middle of” &Il children ofn in the explicit graph. Note that these backups

the greedy po*”Cy SU_bgraph- _ , 2We assume that performing an action in a state where it is not
Next, HAO* considers all possible successéusn’) of  allowed is an error that ends execution with zero or constant reward.
n given the state distributio,. Typically, whenn is ex- 3Sometimes it is beneficial to use the tree implementation of AO*

panded for the first time, we enumerate all actioqmssible  when the problem graph Emosta tree, by duplicating nodes that
in (n,x) (@ € A,(x) ) for some reachable (P,(x) > 0), represents the same (discrete) state reached through different paths.



involve all continuous states € X for each nodenotjust the
reachable values of. However, they consider only actions
and arrival nodes that are reachable according,to Once
the value of a state is updated, its new value must be propa-
gated backward in the explicit graph. The backward propaga-
tion stops at nodes where the value function is not modified,

(a) Initial GREEDY graph. Actions have multiple possible
discrete effects (e.gao has two possible effects ino).
The curves represent the current probability distribution
P and value functiorl/ over z values forns. n2 is a
fringe node.

(b) GREEDY graph withn, expanded. Since the path
(no,m2,n3) is optimal for some resource levels i,
P,, has changed. As a consequenag,has been re-
expanded , showing that nods is now reachable from
ns underas, and actioru, has become do-able ing.

Figure 1: Node re-expansion.

fromn’ andx’ undera. This can be expressed as:

P,(x) = Z /X/ P (x)Pr(n|n',x',a)

(n’,a)EQ,
Pr(x | n/,x',a,n)dx' . (2)

and/or at the root node. The whole process is performed bilere, X’ is the domain of possible values f&f, and2,, is
applying Algorithm 2 to the newly expanded node.

1: Z = {n} /I nis the newly expanded node.

2

NGO R W

T W

10:

hile Z # () do
Choose a node’ € Z that has no descendantih
Removen’ from Z.
UpdateV/,,; following Eqn. 1.
if V,,, was modified at the previous stégen
Add all parents of’ in the explicit graph td7.
if optimal decision changes for som@/,x),
P,/(x) > 0then
Update the greedy subgraph (GREEDY )ratif
necessary.
Mark n’ for use at line23 of Algorithm 1.

Updating the state distributions (line 23): P,’s represent
the state distributiominder the greedy poligyand they need

Algorithm 2: Updating the value function,.

the set of pairgn’, a) wherea is the greedy action in’ for
some reachable resource level:

Q,={(n',a) e N x A: Ix X,
P (x) >0, u(x)=a, Pr(n|n/,x,a) >0} ,

where ¥ (x) € A is the greedy action iin,x). Clearly,
we can restrict our attention to state-action pairQjn only.
Note that this operation may induce a loss of total probability
mass @, < >, P,/) because we can run out of a resource
during the transition and end up in a sink state.

When the distribution?,, of a noden in the OPEN list
is updated, its priorityy,, is recomputed using the following
equation (the priority of nodes in CLOSED is maintained as
0):

o = / Po(%) Hy (x)dx 3
x€S(Pp)—XgHd

where S(P) is the support of P: S(P) =

{x € X:P(x) >0}, and X% contains allx € X

such that the statén, x) has already been expanded before
(Xed = ¢ if n has never been expanded). The techniques
used to represent the continuous probability distributiBps
and compute the continuous integrals are discussed in the

to be updated after recomputing the greedy policy. More prenext sub-section. Algorithm 3 presents the state distribution
cisely, P needs to be updated in each descendant of a nodgpdates. It applies to the set of nodes where the greedy
where the optimal decision changed. To update a nade decision changed during value updates (including the newly
we consider all its parents’ in the greedy policy graph, and expanded node, i.e. in HAO* — Algorithm 1).

all the actions: that can lead from one of the parentsrio

The probability of getting ta: with a continuous component 3-3 Handling Continuous Variables

x is the sum over al(n’, a) and all possible values of of

Computationally, the most challenging aspect of HAO* is the

the continuous component over the the probability of arrivinghandling of continuous state variables, and particularly the



1. Z = children of nodes where the optimal decisjon jacent pieces of the value function based on their value. We
changed when updating value functions in Algorithm|1. augmented this approach by representing the continuous state
2: while Z # () do distributionsP,, as piecewise constant functions of the con-
3: Choose a node € Z that has no ancestor . tinuous variables. Under the set of hypotheses above, if the
4:  Removen from Z. initial probability distribution on the continuous variables is
5. UpdateP, following Egn. 2. piecewise constant, then the probability distribution after any
6: if P, was modified at step then finite number of actions is too, and Egn. 2 may always be
7 Move n from CLOSED to OPEN. computed in finite timé.
8 Update the greedy subgraph (GREEDY)at nec- )
essary. 3.4 Properties

9:  Updateg,, following Eqn. 3. As for standard AO*, it can be shown that if the heuristic

Algorithm 3: Updating the state distributions, . functions H,, are admissible (optimistic), the actions have

positive resource consumptions, arttie continuous back-
ups are computed exactlyhen: (i) at each step of HAO*,
computation of the continuous integral in Bellman backupsV/, (x) is an upper-bound on the optimal expected return in
and Eqgns. 2 and 3. We approach this problem using the ided®, x), for all (n,x) expanded by HAO*; (ii) HAO* termi-
developed ifFenget al., 2004 for the same application do- nates after a finite number of iterations; (iii) after termina-
main. However, we note that HAO* could also be used withtion, V,,(x) is equal to the optimal expected return(in x),
other models of uncertainty and continuous variables, as lonfpr all (n, x) reachable under the greedy polidy,(x) > 0).
as the value functions can be computed exactly in finite timeMoreover, if we assume that, in each state, there deome
The approach ofFenget al,, 2004 exploits the structure in  action that terminates execution with zero reward (in a rover
the continuous value functions of the type of problems we argproblem, we would then start a safe sequence), then we can
addressing. These value functions typically appear as colle@valuate the greedy policy at each step of the algorithm by
tions of humps and plateaus, each of which corresponds to@suming that execution ends each time we reach a leaf of the
region in the state space where similar goals are pursued lyreedy subgraph. Under the same hypotheses, the error of
the optimal policy (see Fig. 3). The sharpness of the hump othe greedy policy at each step of the algorithm is bounded by
the edge of a plateau reflects uncertainty of achieving thes®’ _..oonvnopen 9n- This property allows trading com-
goals. Constraints imposing minimal resource levels beforgutation time for accuracy by stopping the algorithm early.
attempting risky actions introduce sharp cuts in the regions.
Such structure is exploited by grouping states that belong t8.5 Heuristic Functions

the same plateau, while reserving a fine discretization for thghe neuristic functionf,, helps focus the search on truly
regions of the state space where it is the most useful (such @seful reachable states. It is essential for tackling real-size
the edges of plateaus). problems. Our heuristic function is obtained by solving a re-
To adapt the approach [fenget al, 2004, we make some  |axed problem. The relaxation is very simple: we assume
assumptions that imply that our value functions can be repregeterministic transitions for the continuous variables, i.e.,
sented as piece-wise constant or linear. Specifically, we a¥r(x'|n,x,a,n’) € {0,1}. If we assume the actions con-
sume that the continuous state space induced by every digyme the minimum amount of each resource, we obtain an
crete state can be divided into hyper-rectangles in each gfdmissible heuristic function. A non-admissible, but proba-
which the following holds: (i) The same actions are appli-ply more informative heuristic function is obtained by using
cable. (i) The reward function is piece-wise constant or lin-the mean resource consumption.
ear. (iii) The distribution of discrete effects of each action are  The central idea is to ugke same algorithrio solve both
identical. (iv) The set of arrival values or value variations for the relaxed and the original problem. Unlike classical ap-
the continuous variables is discrete and constant. Assumpsoaches where a relaxed plan is generated for every search
tions (i-iii) follow from the hypotheses made in our domain state, we generate a “relaxed” search-graph using our HAO*
models. Assumption (iv) comes down to discretizing the acq|gorithmoncewith a deterministic-consumption model and
tions’ resource consumptions, which is an approximation. I trivial heuristic. The value functiol, of a node in the re-
contrasts with the naive approach that consists of discretizyyeq graph represents the heuristic functiép of the asso-
ing the state space regardless of the relevance of the partitiqfiated node in the original problem graph. Solving the relaxed
introduced. Instead, we discretize the action outcomes firshoplem with HAO* is considerably easier, because the struc-
and then deduce a partition of the state space from it. Theyre and the updates of the value functidfsand of the prob-
state-space partition is kept as coarse as possible, so that onjljilities P,, are much simpler than in the original domain.
the relevant distinctions between (continuous) states are takgflpwever, we run into the following problem: deterministic
into account. Given the above conditions, it can be showonsumption implies that the number of reachable states for
(see[Fenget al, 2004) that for any finite horizon, for any any given initial state is very small (because only one con-
discrete state, there exists a partition of the continuous spaggyous assignment is possible). This means that in a single

into hyper-rectangles over which the optimal value functiongypansion, we obtain information about a small number of
is piece-wise constant or linear. The implementation repre-

sents the value functions as kd-trees, using a fast algorithm “A deterministic starting statg is represented by a uniform
to intersect kd-treelfFriedmaret al, 1977, and merging ad-  distribution with very small rectangular support centerestdn
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ﬂb A B C D E F
30 0.1 39 39 38 9

T2(10) 40 0.4 176 163 159 9 1378
ﬂzb 50 1.8 475 456 442 | 12 4855
60 7.6 930 909 860 | 32 12888

70 13.4 1548 1399 1263 | 22
80 324 2293 2148 2004 | 33
90 87.3 3127 3020 2840 | 32
100 119.4 4673 4139 3737 | 17
110 151.0 6594 5983 5446 | 69
[20,30] 120 | 213.3 | 12564 | 11284 | 9237 | 39
130 | 423.2 | 19470 | 17684 | 14341 | 41
140 | 843.1 | 28828 | 27946 | 24227 | 22
150 | 1318.9 | 36504 | 36001 | 32997 | 22

25205
42853
65252
102689
155733
268962
445107
17113
1055056
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>
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Table 1: Performance of the algorithm for different initial re-
source levels. A: initial resource (abstract unit). B: execution
time (s). C: # reachable discrete states. D: # nodes created by
AO*. E: # nodes expanded by AO*. F: # nodes in the optimal
policy graph. G: # goals achieved in the longest branch of the
optimal solution. H: # reachable Markov states.

Figure 2. Case study: the rover navigates around five target

rocks (T1 to T5). The number with each rock is the reward, . . . .
received on testing that rock. (time and energy). Another difference in our implementa-

tion is in the number of nodes expanded at each iteration.

We adapt the findings dHansen and Zilberstein, 20Dthat
states. To address this problem, instead of starting with theverall convergence speeds up if all the nodes in OPEN are
initial resource values, we assume a uniform distribution oveexpanded at once, instead of prioritizing them based,on
the possible range of resource values. Because it is relativelyalues and changing the value functions after each expan-
easy to work with a uniform distribution, the computation is sion?® Finally, these preliminary experiments do not use the
simple relative to the real problem, but we obtain an estimatsophisticated heuristics presented earlier, but the following
for many more states. It is still likely that we reach states forsimple admissible heuristid?,, is the constant function equal
which no heuristic estimate was obtained using these initialo the sum of the utilities of all the goals not achieveain
values. In that case, we simply recompute starting with this We varied the initial amount of resource available to the

=- Re-acquire T4
Lose T1 —=
T4 (15) [15.18]

T3 (10)

initial state. rover. As available resource increases, more nodes are reach-
able and more reward can be gained. The performance of
4 Experimental Evaluation the algorithm is presented in Table 1. We see that the num-

q lqorith lightly simolified . f ber of reachable discrete states is much smaller than the total
Vk\]/e tested our & gon(tj T ondaf S IEIA}SyAS,IAmpI IeO Vag'anzto%Llnumber of states2¢®) and the number of nodes in an opti-
: € Irlc_)ver (SJmaln m% ?r{;sed or | 2or85618| Ctr? e('jr mal policy is surprisingly small. This indicates that AO* is
ntelligent Systems derm@Pedersert al, - Inthis do-  sarticularly well suited to our rover problems. However, the
main, a planetary rover moves in a planar graph made of 105, yher of nodes expanded is quite close to the number of
cations and pat_hs, sets up Instruments at_dlfferent roqks, aN@achable discrete states. Thus, our current simple heuristic
performs experiments on the rocks. Actions may fail, an

hei d i . in R s only slightly effective in reducing the search space, and
their energy and time consumption are uncertain. Resourcg, -hapility makes the largest difference. This suggests that

consumptions are drawn ffO'_m two type of distributior_\s: uni-mch progress can be obtained by using better heuristics. The
form and normal, and then discretized. The problem instancg, ot ¢ojumn measures the total number of reachable Markov
used in our preliminary experiments is illustrated in figure 2'states, after discretizing the action consumptions 45émg

It contains 5 target rocks (T1 to T5) to be tested. To take g, al, 2004. This is the space that a forward search algo-
picture of a target rock, this target must be tracked. To track &' manipulating Markov states, instead of discrete states,
target, we must register it before doing the first move. Later,,ouid have to tackle. In most cases. it would be impossi-

d:ffereg'_tf?argets carr: beTIrc:st an?]re-acquwed Wge? gavigatir_lg|e to explore such space with poor quality heuristics such as
along different paths. These changes are modeled as actighl,.s - This indicates that our algorithm is quite effective in

effects in the discrete state. Overall, the problem contains 4 ; P
iy ; P caling up to very large problems by exploiting the structure
propositional state variables and 37 actions. Therefore, the{ﬁreserﬁlteg by cori(cinu?)uspresources.y P 9

48 i i ich i
are2® different discrete states, which is far beyond the reac Figure 3 shows the converged value function of the ini-

of_?glat DPl?Igonthm.t dh btained usi i tial state of the problem. The value function is comprised of
€ resulls presented nere were oblained using a préliNiayerg) plateaus, where different sets of goals are achieved.

inary implementation of the piecewise constant DP approXThe first plat til level 2 to th
imations described ifFenget al, 2004 based on a flat e first plateau (until resource level 23) corresponds to the

representation of state partitions instead of kd-trees. This s, this implementation, we do not have to maintain exact proba-
is considerably slower than an optimal implementation. Topijlity distributions P,,. We just need to keep track of the supports of

compensate, our domain features a single abstract continuotgse distributions, which can be approximated by lower and upper
resource, while the original domain contains two resourcesounds on each continuous variable.



35 ‘ ‘ ‘ ‘ ‘ ‘ ‘ of this algorithm shows very promising results on a domain

0| of practical importance. We are able to handle problems with
248 discrete states, as well as a continuous component.

25 | In the near future, we hope to report on a more mature ver-
£ sion of the algorithm, which we are currently implementing.
= °F It includes: (1) a full implementation of the techniques de-
g 15t scribed in[Fenget al, 2004; (2) a rover model with two
] continuous variables; (3) a more informed heuristic function,

10 - as discussed in Section 3.5.
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