
Planning with Continuous Resources in Stochastic Domains

Mausam
Dept. of Computer Science

and Engineering
University of Washington
Seattle, WA 981952350
mausam@cs.washington.edu

Emmanuel Benazera∗

Ronen Brafman†, Nicolas Meuleau†

NASA Ames Research Center
Mail Stop 269-3

Moffet Field, CA 94035-1000
{ebenazer, brafman, nmeuleau}

@email.arc.nasa.gov

Eric A. Hansen
Dept. of Computer Science

and Engineering
Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu

Abstract

We consider the problem of optimal planning
in stochastic domains with resource constraints,
where resources are continuous and the choice of
action at each step may depend on the current
resource level. Our principal contribution is the
HAO* algorithm, a generalization of the AO* algo-
rithm that performs search in a hybrid state space
that is modeled using both discrete and continu-
ous state variables. The search algorithm leverages
knowledge of the starting state to focus computa-
tional effort on the relevant parts of the state space.
We claim that this approach is especially effective
when resource limitations contribute to reachabil-
ity constraints. Experimental results show its ef-
fectiveness in the domain that motivates our re-
search – automated planning for planetary explo-
ration rovers.

1 Introduction
Control of planetary exploration rovers presents several im-
portant challenges for research in automated planning. Be-
cause of difficulties inherent in communicating with devices
on other planets, remote rovers must operate autonomously
over substantial periods of time[Bresinaet al., 2002]. The
planetary surfaces on which they operate are very uncertain
environments: there is a great deal of uncertainty about the
duration, energy consumption, and outcome of a rover’s ac-
tions. Currently, instructions sent to planetary rovers are in
the form of a simple plan for attaining a single goal (e.g.,
photographing some interesting rock). The rover attempts
to carry this out, and, when done, remains idle. If it fails
early on, it makes no attempt to recover and possibly achieve
an alternative goal. This may have a serious impact on mis-
sions. For example, it has been estimated that the 1997 Mars
Pathfinder rover spent between 40% and 75% of its time do-
ing nothing because plans did not execute as expected. The
current MER rovers (aka Spirit and Opportunity) require an
average of 3 days to visit a single rock, but in future missions,
multiple rock visits in a single communication cycle will be

∗ Research Institute for Advanced Computer Science.
† QSS Group Inc.

possible[Pedersenet al., 2005]. As a result, it is expected
that space scientists will request a large number of potential
tasks for future rovers to perform, more than may be feasible,
presenting an oversubscribed planning problem.

Working in this application domain, our goal is to provide a
planning algorithm that can generate reliable contingent plans
that respond to different events and action outcomes. Such
plans must optimize the expected value of the experiments
conducted by the rover, while being aware of its time, energy,
and memory constraints. In particular, we must pay atten-
tion to the fact that given any initial state, there are multiple
locations the rover could reach, and many experiments the
rover could conduct,most combinations of whichare infea-
sible due to resource constraints. To address this problem
we need a faithful model of the rover’s domain, and an al-
gorithm that can generate optimal or near-optimal plans for
such domains. General features of our problem include: (1)
a concrete starting state; (2) continuous resources (including
time) with stochastic consumption; (3) uncertain action ef-
fects; (4) several possible one-time-rewards, only a subset of
which are achievable in a single run. This type of problem is
of general interest, and includes a large class of (stochastic)
logistics problems, among others.

Past work has dealt with some features of this problem.
Related work on MDPs with resource constraints includes the
model of constrained MDPs developed in the OR community
[Altman, 1999]. A constrained MDP is solved by a linear
program that includes constraints on resource consumption,
and finds the best feasible policy, given an initial state and re-
source allocation. A drawback of the constrained MDP model
is that it does not include resources in the state space, and
thus, a policy cannot be conditioned on resource availability.
Moreover, it does not model stochastic resource consumption.
In the area of decision-theoretic planning, several techniques
have been proposed to handle uncertain continuous variables
(e.g.[Fenget al., 2004; Younes and Simmons, 2004; Guestrin
et al., 2004]). Smith 2004 and van den Briel etal. 2004 con-
sider the problem of over-subscription planning, i.e., plan-
ning with a large set of goals which is not entirely achievable.
They provide techniques for selecting a subset of goals for
which to plan, but they deal only with deterministic domains.
Finally, Meuleauet al.2004 present preliminary experiments
towards scaling up decision-theoretic approaches to planetary
rover problems.

Our contribution in this paper is an implemented algorithm,
Hybrid AO* (HAO*), that handles all of these problems to-
gether: oversubscription planning, uncertainty, and limited
continuous resources. Of these, the most essential features
of our algorithm are its ability to handle hybrid state-spaces
and to utilize the fact that many states are unreachable due to
resource constraints.

In our approach, resources are included in the state descrip-
tion. This allows decisions to be made based on resource
availability, and it allows a stochastic resource consumption
model (as opposed to constrained MDPs). Although this in-
creases the size of the state space, we assume that the value
functions may be represented compactly. We use the work
of Feng etal. (2004) on piecewise constant and linear ap-
proximations of dynamic programming (DP) in our imple-
mentation. However, standard DP does not exploit the fact
that the reachable state space is much smaller than the com-
plete state space, especially in the presence of resource con-
straints. Our contribution is to show how to use the for-
ward heuristic search algorithm called AO*[Pearl, 1984;
Hansen and Zilberstein, 2001] to solve MDPs with resource
constraints and continuous resource variables. Unlike DP,
forward search keeps track of the trajectory from the start
state to each reachable state, and thus it can check whether the
trajectory is feasible or violates a resource constraint. This al-
lows heuristic search to prune infeasible trajectories and can
dramatically reduce the number of states that must be consid-
ered to find an optimal policy. This is particularly important
in our domain where the discrete state space is huge (expo-
nential in the number of goals), yet the portion reachable from
any initial state is relatively small because of the resource
constraints. It is well-known that heuristic search can be more
efficient than DP because it leverages a search heuristic and
reachability constraints to focus computation on the relevant
parts of the state space. We show that for problems with re-
source constraints, this advantage can be even greater than
usual because resource constraints further limit reachability.

The paper is structured as follows: In Section 2 we describe
the basic action and goal model. In Section 3 we explain our
planning algorithm, HAO*. Initial experimental results are
described in Section 4, and we conclude in Section 5.

2 Problem Definition and Solution Approach
2.1 Problem Formulation
We consider a Markov decision process (MDP) with both
continuous and discrete state variables (also called ahy-
brid MDP [Guestrin et al., 2004] or Generalized State
MDP [Younes and Simmons, 2004]). Each state corresponds
to an assignment to a set of state variables. These variables
may be discrete or continuous. Continuous variables typically
represent resources, where one possible type of resource is
time. Discrete variables model other aspects of the state, in-
cluding (in our application) the set of goals achieved so far by
the rover. (Keeping track of already-achieved goals ensures
a Markovian reward structure, since we reward achievement
of a goal only if it was not achieved in the past.) Although
our models typically contain multiple discrete variables, this
plays no role in the description of our algorithm, and so, for

notational convenience, we model the discrete component as
a single variablen.

A Markov states ∈ S is a pair(n,x) wheren ∈ N is the
discrete variable, andx = (xi) is a vector of continuous vari-
ables. The domain of eachxi is an intervalXi of the real line,
andX =

⊗
i Xi is the hypercube over which the continuous

variables are defined. We assume an explicitinitial state, de-
noted(n0,x0), and one or more absorbingterminal states.
One terminal state corresponds to the situation in which all
goals have been achieved. Others model situations in which
resources have been exhausted or an action has resulted in
some error condition that requires executing a safe sequence
by the rover and terminating plan execution.

Actionscan have executability constraints. For example,
an action cannot be executed in a state that does not have its
minimum resource requirements.An(x) denotes the set of
actions executable in state(n,x).

State transition probabilitiesare given by the function
Pr(s′ | s, a), wheres = (n,x) denotes the state before action
a ands′ = (n′,x′) denotes the state after actiona, also called
the arrival state. Following[Fenget al., 2004], the probabili-
ties are decomposed into:

• the discrete marginalsPr(n′|n,x, a). For all (n,x, a),∑
n′∈N Pr(n′|n,x, a) = 1;

• the continuous conditionalsPr(x′|n,x, a, n′). For all
(n,x, a, n′),

∫
x′∈X

Pr(x′|n,x, a, n′)dx′ = 1.

Any transition that results in negative value for some contin-
uous variable is viewed as a transition into a terminal state.

The reward of a transition is a function of the arrival
state only. More complex dependencies are possible, but
this is sufficient for our goal-based domain models. We let
Rn(x) ≥ 0 denote therewardassociated with a transition to
state(n,x).

In our application domain, continuous variables model
non-replenishable resources. This translates into the general
assumption that the value of the continuous variables is non-
increasing. Moreover, we assume that each action has some
minimum positive consumption of at least one resource. We
do not utilize this assumption directly. However, it has two
implications upon which the correctness of our approach de-
pends: (1) the values of the continuous variables are a-priori
bounded, and (2) the number of possible steps in any execu-
tion of a plan is bounded, which we refer to by saying the
problem has abounded horizon. Note that the actual num-
ber of steps until termination can vary depending on actual
resource consumption.

Given an initial state(n0,x0), the objective is to find a
policy that maximizes expected cumulative reward.1 In our
application, this is equal to the sum of the rewards for the
goals achieved before running out of a resource. Note that
there is no direct incentive to save resources: an optimal solu-
tion would save resources only if this allows achieving more
goals. Therefore, we stay in a standard decision-theoretic
framework. This problem is solved by solving Bellman’s op-

1Our algorithm can easily be extended to deal with an uncertain
starting state, as long as its probability distribution is known.

timality equation, which takes the following form:

V 0
n (x) = 0 ,

V t+1
n (x) = max

a∈An(x)

[∑

n′∈N

Pr(n′ |, n,x, a)

∫

x′
Pr(x′ | n,x, a, n′)

(
Rn′(x′) + V t

n′(x
′)

)
dx′

]
.

(1)

Note that the indext represents the iteration ortime-stepof
DP, and does not necessarily correspond to time in the plan-
ning problem. The duration of actions is one of the biggest
sources of uncertainty in our rover problems, and we typically
model time as one of the continuous resourcesxi.

2.2 Solution Approach
Fenget al. describe a dynamic programming (DP) algorithm
that solves this Bellman optimality equation. In particular,
they show that the continuous integral overx′ can be com-
puted exactly, as long as the transition function satisfies cer-
tain conditions. This algorithm is rather involved, so we will
treat it as a black-box in our algorithm. In fact, it can be
replaced by any other method for carrying out this compu-
tation. This also simplifies the description of our algorithm
in the next section and allows us to focus on our contribu-
tion. We do explain the ideas and the assumptions behind the
algorithm of Fenget al. in Section 3.3.

The difficulty we address in this paper is the potentially
huge size of the state space, which makes DP infeasible.
One reason for this size is the existence of continuous vari-
ables. But even if we only consider the discrete compo-
nent of the state space, the size of the state space is expo-
nential in the number of propositional variables comprising
the discrete component. To address this issue, we use for-
ward heuristic search in the form of a novel variant of the
AO* algorithm. Recall that AO* is an algorithm for search-
ing AND/OR graphs[Pearl, 1984; Hansen and Zilberstein,
2001]. Such graphs arise in problems where there are choices
(the OR components), and each choice can have multiple con-
sequences (the AND component), as is the case in planning
under uncertainty. AO* can be very effective in solving such
planning problems when there is a large state space. One rea-
son for this is that AO* only considers states that are reach-
able from an initial state. Another reason is that given an
informative heuristic function, AO* focuses on states that are
reachable in the course of executing a good plan. As a result,
AO* often finds an optimal plan by exploring a small fraction
of the entire state space.

The challenge we face in applying AO* to this problem is
the challenge of performing state-space search in a contin-
uous state space. Our solution is to search in anaggregate
state spacethat is represented by a search graph in which
there is a node for each distinct value of the discrete compo-
nent of the state. In other words, each node of our search
graph represents a region of the continuous state space in
which the discrete value is the same. In this approach, dif-
ferent actions may be optimal for different Markov states in
the aggregate state associated with a search node, especially
since the best action is likely to depend on how much energy

or time is remaining. To address this problem and still find
an optimal solution, we associate a value estimate with each
of the Markov states in an aggregate. That is, we attach to
each search node a value function (function of the continu-
ous variables) instead of the simple scalar value used by stan-
dard AO*. Following the approach of[Fenget al., 2004], this
value function can be represented and computed efficiently
due to the continuous nature of these states and the simplify-
ing assumptions made about the transition functions. Using
these value estimates, we can associate different actions with
different Markov states within the aggregate state correspond-
ing to a search node.

In order to select which node on the fringe of the search
graph to expand, we also need to associate a scalar value with
each search node. Thus, we maintain for a search node both
a heuristic estimate of the value function (which is used to
make action selections), and a heuristic estimate of the prior-
ity which is used to decide which search node to expand next.
Details are given in the following section.

We note that LAO*, a generalization of AO*, allows for
policies that contain “loops” in order to specify behavior over
an infinite horizon[Hansen and Zilberstein, 2001]. We could
use similar ideas to extend LAO* to our setting. However,
we need not consider loops for two reasons: (1) our prob-
lems have a bounded horizon; (2) an optimal policy will not
contain any intentional loop because returning to the same
discrete state with fewer resources cannot buy us anything.
Our current implementation assumes any loop is intentional
and discards actions that create such a loop.

3 Hybrid AO*
A simple way of understanding HAO* is as an AO* variant
where states with identical discrete component are expanded
in unison. HAO* works with two graphs:

• Theexplicit graphdescribes all the states that have been
generated so far and the AND/OR edges that connect
them. The nodes of the explicit graph are stored in two
lists: OPEN and CLOSED.

• The greedy policy(or partial solution) graph, denoted
GREEDY in the algorithms, is a sub-graph of the ex-
plicit graph describing the current optimal policy.

In standard AO*, a single action will be associated with each
node in the greedy graph. However, as described before, mul-
tiple actions can be associated with each node, because dif-
ferent actions may be optimal for different Markov states rep-
resented by an aggregate state.

3.1 Data Structures
The main data structure represents a search noden. It con-
tains:

• The value of the discrete state. In our application these
are the discrete state variables and set of goals achieved.

• Pointers to its parents and children in the explicit and
greedy policy graphs.

• Pn(·) – a probability distribution on the continuous vari-
ables in noden. For eachx ∈ X, Pn(x) is an estimate

of the probability density of passing through state(n,x)
under the current greedy policy. It is obtained bypro-
gressingthe initial state forward through the optimal ac-
tions of the greedy policy. With eachPn, we maintain
the probability of passing throughn under the greedy
policy:

M(Pn) =
∫

x∈X

Pn(x)dx .

• Hn(·) – the heuristic function. For eachx ∈ X, Hn(x)
is a heuristic estimate of the optimal expected reward
from state(n,x).

• Vn(·) – the value function. At the leaf nodes of the ex-
plicit graph,Vn = Hn. At the non-leaf nodes of the
explicit graph,Vn is obtained by backing up theH func-
tions from the descendant leaves. If the heuristic func-
tion Hn′ is admissible in all leaf nodesn′, thenVn(x)
is an upper bound on the optimal reward to come from
(n,x) for all x reachable under the greedy policy.

• gn – a heuristic estimate of the increase in value of the
greedy policy that we would get by expanding noden.
If Hn is admissible thengn represents an upper bound
on the gain in expected reward. The gaingn is used to
determine the priority of nodes in the OPEN list (gn = 0
if n is in CLOSED), and to bound the error of the greedy
solution at each iteration of the algorithm.

Note that some of this information is redundant. Never-
theless, it is convenient to maintain all of it so that the algo-
rithm can easily access it. HAO* uses the customary OPEN
and CLOSED lists maintained by AO*. They encode the ex-
plicit graph and the current greedy policy. CLOSED contains
expanded nodes, and OPEN contains unexpanded nodes and
nodes that need to be re-expanded.

3.2 The HAO* Algorithm
Algorithm 1 presents the main procedure. The crucial steps
are described in detail below.

Expanding a node (lines 10 to 20):At each iteration, HAO*
expands the open noden with the highest prioritygn in the
greedy graph. An important distinction between AO* and
HAO* is that in the latter, nodes are often only partially
expanded (i.e., not all Markov states associated with a dis-
crete node are considered). Thus, nodes in the CLOSED
list are sometimes put back in OPEN (line23). The reason
for this is that a Markov state associated with this node, that
was previously considered unreachable, may now be reach-
able. Technically, what happens is that as a result of finding
a new path to a node, the probability distribution over it is
updated (line23), possibly increasing the probability of some
Markov state from 0 to some positive value. This process is
illustrated in Figure 1. Thus, while standard AO* expands
only tip nodes, HAO* sometimes expands nodes that were
moved from CLOSED to OPEN and are “in the middle of”
the greedy policy subgraph.

Next, HAO* considers all possible successors(a, n′) of
n given the state distributionPn. Typically, whenn is ex-
panded for the first time, we enumerate all actionsa possible
in (n,x) (a ∈ An(x)) for some reachablex (Pn(x) > 0),

1: Create the root noden0 which represents the initial state.
2: Pn0 = initial distribution on resources.
3: Vn0 = 0 everywhere inX.
4: gn0 = 0.
5: OPEN= GREEDY= {n0}.
6: CLOSED= ∅.
7: while OPEN∩ GREEDY 6= ∅ do
8: n = arg maxn′∈OPEN∩GREEDY(gn′).
9: Moven from OPEN to CLOSED.

10: for all (a, n′) ∈ A × N not expanded yet inn and
reachable underPn do

11: if n′ /∈ OPEN ∪ CLOSED then
12: Create the data structure to representn′ and add

the transition(n, a, n′) to the explicit graph.
13: GetHn′ .
14: Vn′ = Hn′ everywhere inX.
15: if n′ is terminal:then
16: Add n′ to CLOSED.
17: else
18: Add n′ to OPEN.
19: else ifn′ is not an ancestor ofn in the explicit graph

then
20: Add the transition(n, a, n′) to the explicit graph.
21: if some pair(a, n′) was expanded at previous step (10)

then
22: UpdateVn for the expanded noden and some of its

ancestors in the explicit graph, with Algorithm 2.
23: UpdatePn′ andgn′ using Algorithm 3 for the nodes

n′ that are children of the expanded node or of a node
where the optimal decision changed at the previous
step (22). Move every noden′ ∈ CLOSED where
P changed back into OPEN.

Algorithm 1: Hybrid AO*

and all arrival statesn′ that can result from such a transi-
tion (Pr(n′ | n,x, a) > 0).2 If n was previously expanded
(i.e. it has been put back in OPEN), only actions and arrival
nodes not yet expanded are considered. In line11, we check
whether a node has already been generated. This is not nec-
essary if the graph is a tree (i.e., there is only one way to get
to each discrete state).3 In line 15, a noden′ is terminal if
no action is executable in it (because of lack of resources).
In our application domain each goal pays only once, thus the
nodes in which all goals of the problem have been achieved
are also terminal. Finally, the test in line19 prevents loops in
the explicit graph. As discussed earlier, such loops are always
suboptimal.

Updating the value functions (lines 22 to 23):As in stan-
dard AO*, the value of a newly expanded node must be up-
dated. This consists of recomputing its value function with
Bellman’s equations (Eqn. 1), based on the value functions of
all children ofn in the explicit graph. Note that these backups

2We assume that performing an action in a state where it is not
allowed is an error that ends execution with zero or constant reward.

3Sometimes it is beneficial to use the tree implementation of AO*
when the problem graph isalmosta tree, by duplicating nodes that
represents the same (discrete) state reached through different paths.

1n

3n

2n

4n0n

1a

0a 2a

Vn3

Pn3

x

x

(a) Initial GREEDY graph. Actions have multiple possible
discrete effects (e.g.,a0 has two possible effects inn0).
The curves represent the current probability distribution
P and value functionV over x values forn3. n2 is a
fringe node.

1n

3n

2n

4n

6n

0n

5n

Vn3

1a

0a
2a

4a
3a

x

x

Pn3

(b) GREEDY graph withn2 expanded. Since the path
(n0, n2, n3) is optimal for some resource levels inn0,
Pn3 has changed. As a consequence,n3 has been re-
expanded , showing that noden5 is now reachable from
n3 undera2, and actiona4 has become do-able inn3.

Figure 1: Node re-expansion.

involve all continuous statesx ∈ X for each node,not just the
reachable values ofx. However, they consider only actions
and arrival nodes that are reachable according toPn. Once
the value of a state is updated, its new value must be propa-
gated backward in the explicit graph. The backward propaga-
tion stops at nodes where the value function is not modified,
and/or at the root node. The whole process is performed by
applying Algorithm 2 to the newly expanded node.

1: Z = {n} // n is the newly expanded node.
2: while Z 6= ∅ do
3: Choose a noden′ ∈ Z that has no descendant inZ.
4: Removen′ from Z.
5: UpdateVn′ following Eqn. 1.
6: if Vn′ was modified at the previous stepthen
7: Add all parents ofn′ in the explicit graph toZ.
8: if optimal decision changes for some(n′,x),

Pn′(x) > 0 then
9: Update the greedy subgraph (GREEDY) atn′ if

necessary.
10: Mark n′ for use at line23 of Algorithm1.

Algorithm 2: Updating the value functionsVn.

Updating the state distributions (line 23): Pn’s represent
the state distributionunder the greedy policy, and they need
to be updated after recomputing the greedy policy. More pre-
cisely, P needs to be updated in each descendant of a node
where the optimal decision changed. To update a noden,
we consider all its parentsn′ in the greedy policy graph, and
all the actionsa that can lead from one of the parents ton.
The probability of getting ton with a continuous component
x is the sum over all(n′, a) and all possible values ofx′ of
the continuous component over the the probability of arriving

from n′ andx′ undera. This can be expressed as:

Pn(x) =
∑

(n′,a)∈Ωn

∫

X′
Pn′(x′) Pr(n | n′,x′, a)

Pr(x | n′,x′, a, n)dx′ . (2)

Here,X′ is the domain of possible values forx′, andΩn is
the set of pairs(n′, a) wherea is the greedy action inn′ for
some reachable resource level:

Ωn = {(n′, a) ∈ N ×A : ∃x ∈ X,

Pn′(x) > 0, µ∗n′(x) = a, Pr(n | n′,x, a) > 0} ,

whereµ∗n(x) ∈ A is the greedy action in(n,x). Clearly,
we can restrict our attention to state-action pairs inΩn, only.
Note that this operation may induce a loss of total probability
mass (Pn <

∑
n′ Pn′) because we can run out of a resource

during the transition and end up in a sink state.
When the distributionPn of a noden in the OPEN list

is updated, its prioritygn is recomputed using the following
equation (the priority of nodes in CLOSED is maintained as
0):

gn =
∫

x∈S(Pn)−Xold
n

Pn(x)Hn(x)dx ; (3)

where S(P) is the support of P : S(P) =
{x ∈ X : P (x) > 0}, and Xold

n contains all x ∈ X
such that the state(n,x) has already been expanded before
(Xold

n = ∅ if n has never been expanded). The techniques
used to represent the continuous probability distributionsPn

and compute the continuous integrals are discussed in the
next sub-section. Algorithm 3 presents the state distribution
updates. It applies to the set of nodes where the greedy
decision changed during value updates (including the newly
expanded node, i.e.n in HAO* – Algorithm 1).

3.3 Handling Continuous Variables
Computationally, the most challenging aspect of HAO* is the
handling of continuous state variables, and particularly the

1: Z = children of nodes where the optimal decision
changed when updating value functions in Algorithm 1.

2: while Z 6= ∅ do
3: Choose a noden ∈ Z that has no ancestor inZ.
4: Removen from Z.
5: UpdatePn following Eqn. 2.
6: if Pn was modified at step5 then
7: Moven from CLOSED to OPEN.
8: Update the greedy subgraph (GREEDY) atn if nec-

essary.
9: Updategn following Eqn. 3.

Algorithm 3: Updating the state distributionsPn.

computation of the continuous integral in Bellman backups
and Eqns. 2 and 3. We approach this problem using the ideas
developed in[Fenget al., 2004] for the same application do-
main. However, we note that HAO* could also be used with
other models of uncertainty and continuous variables, as long
as the value functions can be computed exactly in finite time.
The approach of[Fenget al., 2004] exploits the structure in
the continuous value functions of the type of problems we are
addressing. These value functions typically appear as collec-
tions of humps and plateaus, each of which corresponds to a
region in the state space where similar goals are pursued by
the optimal policy (see Fig. 3). The sharpness of the hump or
the edge of a plateau reflects uncertainty of achieving these
goals. Constraints imposing minimal resource levels before
attempting risky actions introduce sharp cuts in the regions.
Such structure is exploited by grouping states that belong to
the same plateau, while reserving a fine discretization for the
regions of the state space where it is the most useful (such as
the edges of plateaus).

To adapt the approach of[Fenget al., 2004], we make some
assumptions that imply that our value functions can be repre-
sented as piece-wise constant or linear. Specifically, we as-
sume that the continuous state space induced by every dis-
crete state can be divided into hyper-rectangles in each of
which the following holds: (i) The same actions are appli-
cable. (ii) The reward function is piece-wise constant or lin-
ear. (iii) The distribution of discrete effects of each action are
identical. (iv) The set of arrival values or value variations for
the continuous variables is discrete and constant. Assump-
tions (i-iii) follow from the hypotheses made in our domain
models. Assumption (iv) comes down to discretizing the ac-
tions’ resource consumptions, which is an approximation. It
contrasts with the naive approach that consists of discretiz-
ing the state space regardless of the relevance of the partition
introduced. Instead, we discretize the action outcomes first,
and then deduce a partition of the state space from it. The
state-space partition is kept as coarse as possible, so that only
the relevant distinctions between (continuous) states are taken
into account. Given the above conditions, it can be shown
(see[Fenget al., 2004]) that for any finite horizon, for any
discrete state, there exists a partition of the continuous space
into hyper-rectangles over which the optimal value function
is piece-wise constant or linear. The implementation repre-
sents the value functions as kd-trees, using a fast algorithm
to intersect kd-trees[Friedmanet al., 1977], and merging ad-

jacent pieces of the value function based on their value. We
augmented this approach by representing the continuous state
distributionsPn as piecewise constant functions of the con-
tinuous variables. Under the set of hypotheses above, if the
initial probability distribution on the continuous variables is
piecewise constant, then the probability distribution after any
finite number of actions is too, and Eqn. 2 may always be
computed in finite time.4

3.4 Properties
As for standard AO*, it can be shown that if the heuristic
functionsHn are admissible (optimistic), the actions have
positive resource consumptions, andthe continuous back-
ups are computed exactly, then: (i) at each step of HAO*,
Vn(x) is an upper-bound on the optimal expected return in
(n,x), for all (n,x) expanded by HAO*; (ii) HAO* termi-
nates after a finite number of iterations; (iii) after termina-
tion, Vn(x) is equal to the optimal expected return in(n,x),
for all (n,x) reachable under the greedy policy (Pn(x) > 0).
Moreover, if we assume that, in each state, there is adone
action that terminates execution with zero reward (in a rover
problem, we would then start a safe sequence), then we can
evaluate the greedy policy at each step of the algorithm by
assuming that execution ends each time we reach a leaf of the
greedy subgraph. Under the same hypotheses, the error of
the greedy policy at each step of the algorithm is bounded by∑

n∈GREEDY∩OPEN gn. This property allows trading com-
putation time for accuracy by stopping the algorithm early.

3.5 Heuristic Functions
The heuristic functionHn helps focus the search on truly
useful reachable states. It is essential for tackling real-size
problems. Our heuristic function is obtained by solving a re-
laxed problem. The relaxation is very simple: we assume
deterministic transitions for the continuous variables, i.e.,
Pr(x′|n,x, a, n′) ∈ {0, 1}. If we assume the actions con-
sume the minimum amount of each resource, we obtain an
admissible heuristic function. A non-admissible, but proba-
bly more informative heuristic function is obtained by using
the mean resource consumption.

The central idea is to usethe same algorithmto solve both
the relaxed and the original problem. Unlike classical ap-
proaches where a relaxed plan is generated for every search
state, we generate a “relaxed” search-graph using our HAO*
algorithmoncewith a deterministic-consumption model and
a trivial heuristic. The value functionVn of a node in the re-
laxed graph represents the heuristic functionHn of the asso-
ciated node in the original problem graph. Solving the relaxed
problem with HAO* is considerably easier, because the struc-
ture and the updates of the value functionsVn and of the prob-
abilities Pn are much simpler than in the original domain.
However, we run into the following problem: deterministic
consumption implies that the number of reachable states for
any given initial state is very small (because only one con-
tinuous assignment is possible). This means that in a single
expansion, we obtain information about a small number of

4A deterministic starting statex0 is represented by a uniform
distribution with very small rectangular support centered inx0.

Re−acquire T4

L1

L2

L3

L4

T1(5)

T2(10)

T5(15)

T3 (10)

T4 (15)

[20,30]

[20,30]

[15,18]

[15,20]

Lose T4

Lose T2, T5

Lose T1

Figure 2: Case study: the rover navigates around five target
rocks (T1 to T5). The number with each rock is the reward
received on testing that rock.

states. To address this problem, instead of starting with the
initial resource values, we assume a uniform distribution over
the possible range of resource values. Because it is relatively
easy to work with a uniform distribution, the computation is
simple relative to the real problem, but we obtain an estimate
for many more states. It is still likely that we reach states for
which no heuristic estimate was obtained using these initial
values. In that case, we simply recompute starting with this
initial state.

4 Experimental Evaluation
We tested our algorithm on a slightly simplified variant of
the rover domain model used for NASA Ames October 2004
Intelligent Systems demo[Pedersenet al., 2005]. In this do-
main, a planetary rover moves in a planar graph made of lo-
cations and paths, sets up instruments at different rocks, and
performs experiments on the rocks. Actions may fail, and
their energy and time consumption are uncertain. Resource
consumptions are drawn from two type of distributions: uni-
form and normal, and then discretized. The problem instance
used in our preliminary experiments is illustrated in figure 2.
It contains 5 target rocks (T1 to T5) to be tested. To take a
picture of a target rock, this target must be tracked. To track a
target, we must register it before doing the first move. Later,
different targets can be lost and re-acquired when navigating
along different paths. These changes are modeled as action
effects in the discrete state. Overall, the problem contains 43
propositional state variables and 37 actions. Therefore, there
are248 different discrete states, which is far beyond the reach
of a flat DP algorithm.

The results presented here were obtained using a prelim-
inary implementation of the piecewise constant DP approx-
imations described in[Feng et al., 2004] based on a flat
representation of state partitions instead of kd-trees. This
is considerably slower than an optimal implementation. To
compensate, our domain features a single abstract continuous
resource, while the original domain contains two resources

A B C D E F G H
30 0.1 39 39 38 9 1 239
40 0.4 176 163 159 9 1 1378
50 1.8 475 456 442 12 1 4855
60 7.6 930 909 860 32 2 12888
70 13.4 1548 1399 1263 22 2 25205
80 32.4 2293 2148 2004 33 2 42853
90 87.3 3127 3020 2840 32 2 65252
100 119.4 4673 4139 3737 17 2 102689
110 151.0 6594 5983 5446 69 3 155733
120 213.3 12564 11284 9237 39 3 268962
130 423.2 19470 17684 14341 41 3 445107
140 843.1 28828 27946 24227 22 3 17113
150 1318.9 36504 36001 32997 22 3 1055056

Table 1: Performance of the algorithm for different initial re-
source levels. A: initial resource (abstract unit). B: execution
time (s). C: # reachable discrete states. D: # nodes created by
AO*. E: # nodes expanded by AO*. F: # nodes in the optimal
policy graph. G: # goals achieved in the longest branch of the
optimal solution. H: # reachable Markov states.

(time and energy). Another difference in our implementa-
tion is in the number of nodes expanded at each iteration.
We adapt the findings of[Hansen and Zilberstein, 2001] that
overall convergence speeds up if all the nodes in OPEN are
expanded at once, instead of prioritizing them based ongn

values and changing the value functions after each expan-
sion.5 Finally, these preliminary experiments do not use the
sophisticated heuristics presented earlier, but the following
simple admissible heuristic:Hn is the constant function equal
to the sum of the utilities of all the goals not achieved inn.

We varied the initial amount of resource available to the
rover. As available resource increases, more nodes are reach-
able and more reward can be gained. The performance of
the algorithm is presented in Table 1. We see that the num-
ber of reachable discrete states is much smaller than the total
number of states (248) and the number of nodes in an opti-
mal policy is surprisingly small. This indicates that AO* is
particularly well suited to our rover problems. However, the
number of nodes expanded is quite close to the number of
reachable discrete states. Thus, our current simple heuristic
is only slightly effective in reducing the search space, and
reachability makes the largest difference. This suggests that
much progress can be obtained by using better heuristics. The
last column measures the total number of reachable Markov
states, after discretizing the action consumptions as in[Feng
et al., 2004]. This is the space that a forward search algo-
rithm manipulating Markov states, instead of discrete states,
would have to tackle. In most cases, it would be impossi-
ble to explore such space with poor quality heuristics such as
ours. This indicates that our algorithm is quite effective in
scaling up to very large problems by exploiting the structure
presented by continuous resources.

Figure 3 shows the converged value function of the ini-
tial state of the problem. The value function is comprised of
several plateaus, where different sets of goals are achieved.
The first plateau (until resource level 23) corresponds to the

5In this implementation, we do not have to maintain exact proba-
bility distributionsPn. We just need to keep track of the supports of
these distributions, which can be approximated by lower and upper
bounds on each continuous variable.

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140

E
xp

ec
te

d
ut

ili
ty

Initial resource

Figure 3: Value function of the initial state.

Initial Execution # nodes # nodes
resource ε time created by AO* expanded by AO*

130 0.00 426.8 17684 14341
130 0.50 371.9 17570 14018
130 1.00 331.9 17486 13786
130 1.50 328.4 17462 13740
130 2.00 330.0 17462 13740
130 2.50 320.0 17417 13684
130 3.00 322.1 17417 13684
130 3.50 318.3 17404 13668
130 4.00 319.3 17404 13668
130 4.50 319.3 17404 13668
130 5.00 318.5 17404 13668
130 5.50 320.4 17404 13668
130 6.00 315.5 17356 13628

Table 2: Complexity of computing anε-optimal policy. The
optimal return for an initial resource of 130 is 30.

case where the resource level is insufficient for any goal to
be achieved. The next plateau (until 44) depicts the region
in which the target T1 is tested. The remaining resources are
still not enough to move to a new location and generate ad-
ditional rewards. In the region between 44 and 61 the rover
decides to move to L4 and test T4. Note that the location L2 is
farther from L4 and so the rover does not attempt to move to
L2, yet. The next plateau corresponds to the region in which
the optimal strategy is to move to L2 and test both T2 and
T5.The last region (beyond 101) is in which three goals T1,
T2 and T5 are tested and reward of 30 is obtained.

WhenHn is admissible, we can bound the error of the cur-
rent greedy graph by summinggn over fringe nodes. In Ta-
ble 2 we describe the time/value tradeoff we found for this do-
main. On the one hand, we see that even a large compromise
in quality leads to no more than 25% reduction in time. On
the other hand, we see that much of this reduction is obtained
with a very small price (ε = 0.5). Additional experiments are
required to learn if this is a general phenomenon.

5 Conclusions
We presented a variant of the AO* algorithm that, to the best
of our knowledge, is the first algorithm to deal with: limited
continuous resources, uncertainty, and oversubscription plan-
ning. We developed a sophisticated reachability analysis in-
volving continuous variables that could be useful for heuristic
search algorithms at large. Our preliminary implementation

of this algorithm shows very promising results on a domain
of practical importance. We are able to handle problems with
248 discrete states, as well as a continuous component.

In the near future, we hope to report on a more mature ver-
sion of the algorithm, which we are currently implementing.
It includes: (1) a full implementation of the techniques de-
scribed in[Fenget al., 2004]; (2) a rover model with two
continuous variables; (3) a more informed heuristic function,
as discussed in Section 3.5.

Acknowledgements
This work was funded by the NASA Intelligent Systems program.
Eric Hansen was supported in part by NSF grant IIS-9984952,
NASA grant NAG-2-1463 and a NASA Summer Faculty Fellow-
ship.

References
[Altman, 1999] E. Altman. Constrained Markov Decision Pro-

cesses. Chapman and HALL/CRC, 1999.
[Bresinaet al., 2002] J. Bresina, R. Dearden, N. Meuleau, S. Ra-

makrishnan, D. Smith, and R. Washington. Planning under con-
tinuous time and resource uncertainty: A challenge for AI. In
Proceedings of the Eighteenth Conference on Uncertainty in Ar-
tificial Intelligence, pages 77–84, 2002.

[Fenget al., 2004] Z. Feng, R. Dearden, N. Meuleau, and R. Wash-
ington. Dynamic programming for structured continuous Markov
decision problems. InProceedings of the Twentieth Conference
on Uncertainty in Artificial Intelligence, pages 154–161, 2004.

[Friedmanet al., 1977] J.H. Friedman, J.L. Bentley, and R.A.
Finkel. An algorithm for finding best matches in logarithmic ex-
pected time.ACM Trans. Mathematical Software, 3(3):209–226,
1977.

[Guestrinet al., 2004] C. Guestrin, M. Hauskrecht, and B. Kveton.
Solving factored MDPs with continuous and discrete variables.
In Proceedings of the Twentieth Conference on Uncertainty in
Artificial Intelligence, pages 235–242, 2004.

[Hansen and Zilberstein, 2001] E. Hansen and S. Zilberstein.
LAO*: A heuristic search algorithm that finds solutions with
loops.Artificial Intelligence, 129:35–62, 2001.

[Meuleauet al., 2004] N. Meuleau, R. Dearden, and R. Washing-
ton. Scaling up decision theoretic planning to planetary rover
problems. InAAAI-04: Proceedings of the Workshop on Learn-
ing and Planning in Markov Processes Advances and Challenges,
pages 66–71, Technical Report WS-04-08, AAAI Press, Menlo
Park, CA, 2004.

[Pearl, 1984] J. Pearl.Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, 1984.

[Pedersenet al., 2005] L. Pedersen, D. Smith, M. Deans, R. Sar-
gent, C. Kunz, D. Lees, and S.Rajagopalan. Mission planning and
target tracking for autonomous instrument placement. InSubmit-
ted to 2005 IEEE Aerospace Conference, 2005.

[Smith, 2004] D. Smith. Choosing objectives in over-subscription
planning. InProceedings of the Fourteenth International Con-
ference on Automated Planning and Scheduling, pages 393–401,
2004.

[van den Brielet al., 2004] M. van den Briel, M.B. Do
R. Sanchez and, and S. Kambhampati. Effective approaches for
partial satisfation (over-subscription) planning. InProceedings
of the Nineteenth National Conference on Artificial Intelligence,
pages 562–569, 2004.

[Younes and Simmons, 2004] H.L.S. Younes and R.G. Simmons.
Solving generalized semi-Markov decision processes using con-
tinuous phase-type distributions. InProceedings of the Nine-
teenth National Conference on Artificial Intelligence, pages 742–
747, 2004.

