Reverse Iterative Deepening for Finite-Horizon MDPs
with Large Branching Factors

Andrey Kolobov*

Peng Dai' *

Mausam* Daniel S. Weld*

{akolobov, daipeng, mausam, weld} @cs.washington.edu

*Dept. of Computer Science and Engineering

University of Washington
Seattle, USA, WA-98195

Abstract

In contrast to previous competitions, where the problems
were goal-based, the 2011 International Probabilistic Plan-
ning Competition (IPPC-2011) emphasized finite-horizon re-
ward maximization problems with large branching factors.
These MDPs modeled more realistic planning scenarios and
presented challenges to the previous state-of-the-art planners
(e.g., those from IPPC-2008), which were primarily based
on domain determinization a technique more suited to
goal-oriented MDPs with small branching factors. Moreover,
large branching factors render the existing implementations
of RTDP- and LAO"-style algorithms inefficient as well.

In this paper we present GLUTTON, our planner at IPPC-
2011 that performed well on these challenging MDPs. The
main algorithm used by GLUTTON is LR?TDP, an LRTDP-
based optimal algorithm for finite-horizon problems centered
around the novel idea of reverse iterative deepening. We
detail LR2TDP itself as well as a series of optimizations
included in GLUTTON that help LR*TDP achieve compet-
itive performance on difficult problems with large branch-
ing factors — subsampling the transition function, separating
out natural dynamics, caching transition function samples,
and others. Experiments show that GLUTTON and PROST,
the IPPC-2011 winner, have complementary strengths, with
GLUTTON demonstrating superior performance on prob-
lems with few high-reward terminal states.

Introduction

New benchmark MDPs presented at the International Prob-
abilistic Planning Competition (IPPC) 2011 (Sanner 2011)
demonstrated several weaknesses of existing solution tech-
niques. First, the dominating planners of past years (FF-
Replan (Yoon, Fern, and Givan 2007), RFF (Teichteil-
Koenigsbuch, Infantes, and Kuter 2008), etc.) had been
geared towards goal-oriented MDPs with relatively small
branching factors. To tackle such scenarios, they had re-
lied on fully determinizing the domain (small branching fac-
tor made this feasible) and solving the determinized version
of the given problem. For the latter part, the performance
of these solvers critically relied on powerful classical plan-
ners (e.g., FF (Hoffmann and Nebel 2001)) and heuristics,

*Peng Dai completed this work while at the University of Wash-
ington.

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

fGoogle Inc.
1600 Amphitheater Pkwy
Mountain View, USA, CA-94043

all of which assumed the existence of a goal, the unifor-
mity of action costs, benign branching factors, or all three.
In contrast, the majority of IPPC-2011 MDPs were prob-
lems with a finite horizon, non-uniform action costs, large
branching factors, and no goal states — characteristics to
which determinization-based planners are hard to adapt. In-
cidentally, large branching factors made the existing imple-
mentations of heuristic search algorithms such as LRTDP
(Bonet and Geffner 2003) or AO* (Nilsson 1980) obsolete
as well. These algorithms are centered around the Bellman
backup operator, which is very expensive to compute when
state-action pairs have many successors.

Second, previous top-performers optimized for the proba-
bility of their policy reaching the MDP’s goal, which was the
evaluation criterion at preceding IPPCs (Bryce and Buffet
2008), not the expected reward of that policy. At IPPC-2011
the evaluation criterion changed for the latter, more subtle
objective, and thus became more stringent.

Thus, overall, IPPC-2011 introduced much more realis-
tic MDPs and evaluation criteria than before. Indeed, in
real-world systems, large branching factors are common and
are often caused by natural dynamics, effects of exoge-
nous events or forces of nature that cannot be directly con-
trolled but that need to be taken into account during plan-
ning. Moreover, the controller (e.g., on a robot) may only
have limited time to come up with a policy, a circumstance
IPPC-2011 also attempted to model, and the expected re-
ward of the produced policy is very important. To succeed
under these conditions, a planner needs to be not only scal-
able but also sensitive to the expected reward maximization
criterion and, crucially, have a strong anytime performance.

The main theoretical contribution of this paper is
LR2TDP, an algorithm that, with additional optimizations,
can stand up to these challenges. LR2TDP is founded on a
crucial observation that for many MDPs M (H) with hori-
zon H, one can produce a successful policy by solving
M (h), the same MDP but with a much smaller horizon h.
Therefore, under time constraints, trying to solve the se-
quence of MDPs M (1), M (2),--- with increasing horizon
will often yield a near-optimal policy even if the compu-
tation is interrupted long before the planner gets to tackle
MDP M (H). this strategy, which we call reverse iterative
deepening, forms the basis of LRZTDP.

Although the above intuition addresses the issue of any-
time performance, by itself it does not enable LR2TDP to

handle large branching factors. Accordingly, in this paper
we introduce GLUTTON, a planner derived from LRZ2TDP
and our entry in IPPC-2011. GLUTTON endows LR?TDP
with optimizations that help achieve competitive perfor-
mance on difficult problems with large branching factors —
subsampling the transition function, separating out natural
dynamics, caching transition function samples, and using
primitive cyclic policies as a fall-back solution.
Thus, this paper makes the following contributions:

e We introduce the LR2TDP algorithm, an extension of
LRTDP to finite-horizon problems based on the idea of
reverse iterative deepening.

e We describe the design of GLUTTON, our IPPC-2011 en-
try built around LR*TDP. We discuss various engineer-
ing optimizations that were included in GLUTTON to im-
prove LR2TDP’s performance on problems with large
branching factors due to natural dynamics.

o We present results of empirical studies that demonstrate
that LR2TDP performs much better than the straightfor-
ward extension of LRTDP to finite-horizon MDPs. In
addition, we carry out ablation experiments showing the
effects of various optimizations on GLUTTON’s perfor-
mance. Finally, we analyze the comparative performance
of GLUTTON and PROST (Keller and Eyerich 2012), the
winner of IPPC-2011, and find that the two have comple-
mentary strengths.

Background

MDPs. In this paper, we focus on probabilistic plan-
ning problems modeled by finite-horizon MDPs with a
start state, defined as tuples of the form M(H) =
((S, A, T,R,s0), H) where S is a finite set of states, A is a
finite set of actions, 7 is a transition function S x A X S —
[0, 1] that gives the probability of moving from s; to s; by
executing a, R is amap S x A — R that specifies action re-
wards, sg is the start state, and H is the horizon, the number
of time steps after which the process stops.

In this paper, we will reason about the augmented state
space of M(H), which is a set S x {0,...,H} of state-
number of steps-to-go pairs. Solving M (H) means find-
ing a policy, i.e. a rule for selecting actions in augmented
states, s.t. executing the actions recommended by the pol-
icy starting at the augmented initial state (s, H) results in
accumulating the largest expected reward over H time steps.

In particular, let a value function be any mapping V' :
S x{0,...,H} — R, and let the value function of policy ©
be the mapping V™ : & x {0,...,H} — R that gives the
expected reward from executing 7 starting at any augmented
state (s, h) for h steps, h < H. Ideally, we would like to find
an optimal policy 7*, one whose value function V* for all
s € Sobeys V*(s,h) = max, {V™(s,h)} for0 < h < H.

As it turns out, for a given MDP V'* is unique and satisfies
Bellman equations (Bellman 1957) for all s € S:

V*(s,h) = max {R(s,a) + Z T(s,a,s)\V*(s',h— 1)}

o€ s'eS
Y]

for1 <h < H and V*(s,0) = 0 otherwise.

WLOG, we assume the optimal action selection rule 7*

to be deterministic Markovian, i.e., of the form 7* : & X
{1,...,H} — A, since for every finite-horizon MDP at
least one optimal such policy is guaranteed to exist (Puter-
man 1994). If V* is known, a deterministic 7* can be de-
rived from it by choosing a V*-greedy action in each state
alll <h <H.
Solution Methods. Equation 1 suggests a dynamic
programming-based way of finding an optimal policy, called
Value Iteration (VI) (Bellman 1957). VI uses Bellman equa-
tions as an assignment operator, Bellman backup, to com-
pute V* in a bottom-up fashion fort =1,2,... H.

The version of VI for infinite-horizon goal-oriented
stochastic shortest path MDPs (Bertsekas 1995) has given
rise to many improvements. AO* (Nilsson 1980) is an al-
gorithm that works specifically with loop-free MDPs (of
which finite-horizon MDPs are a special case). Trial-based
methods, e.g., RTDP (Barto, Bradtke, and Singh 1995) and
LRTDP (Bonet and Geffner 2003), try to reach the goal from
the initial state multiple times (in multiple trials) and update
the value function over the states in the trial path using Bell-
man backups. Unlike VI, these algorithms memorize only
states reachable from sq, thereby typically requiring much
less space. As we show in this paper, LRTDP can adapted
and optimized for finite-horizon MDPs.

LR?TDP

We begin by introducing LR2TDP, an extension of LRTDP
for finite-horizon problems. Like its predecessor, LRZTDP
solves an MDP for the given initial state sg optimally in the
limit. Extending LRTDP to finite-horizon problems may
seem an easy task, but its most natural extension performs
worse than the one we propose, LR2TDP.

As a reminder, LRTDP (Bonet and Geffner 2003) for
goal-oriented MDPs operates in a series of trials starting at
the initial state so. Each trial consists of choosing the greedy
best action in the current state according to the current value
function, performing a Bellman backup on the current state,
sampling an outcome of the chosen action, transitioning to
the corresponding new state, and repeating the cycle. A trial
continues until it reaches a goal, a dead end (a state from
which reaching the goal is impossible), or a converged state.
At the end of each trial, LRTDP performs a special conver-
gence check on all states in the trial to prove, whenever pos-
sible, the convergence of these states’ values. Once it can
prove that sy has converged, LRTDP halts.

Thus, a straightforward adaptation of LRTDP to a finite-
horizon MDP M (H), which we call LRTDP-FH, is to let
each trial start at (sg, H) and run for at most H time steps.
Indeed, if we convert a finite-horizon MDP to its goal-
oriented counterpart, all states H steps away from s, are
goal states. However, as we explain below, LRTDP-FH’s
anytime performance is not very good, so we turn to a more
sophisticated approach.

Our novel algorithm, LR2TDP, follows a differ-
ent strategy, which we name reverse iterative deepen-
ing. As its pseudocode in Algorithm 1 shows, it uses
LRTDP-FH in a loop to solve a sequence of MDPs
M(1),M(2),---,M(H), in that order. In particular,
LR2TDP first decides how to act optimally in (sg,1), i.e.

Input: MDP M (H) with initial state so
Output: Policy for M (H) starting at s¢

function LR*TDP(MDP M (H), initial state so)
begin
foreach h = 1,..., H or until time runs out do
| Run LRTDP-FH(M (h), so)
end
end
unction LRTDP-FH(MDP M (h), initial state so)
begin
Convert M (h) into the equivalent goal-oriented MDP
M}, whose goals are states of the form (s, 0).

Run LRTDP(M, h, S0), memoizing the values of all the
augmented states encountered in the process

=

end

Algorithm 1: LR>TDP

assuming there is only one more action to execute — this
is exactly equivalent to solving M (1). Then, LR?TDP runs
LRTDP-FH to decide how to act optimally starting at (sq, 2),
i.e. two steps away from the horizon — this amounts to
solving M (2). Then it runs LRTDP-FH again to decide how
to act optimally starting in (sg, 3), thereby solving M (3),
and so on. Proceeding this way, LR?TDP either eventually
solves M (H) or, if operating under a time limit, runs out of
time and halts after solving M (k') for some h' < H.
Crucially, in the spirit of dynamic programming,
LR2TDP reuses state values computed while solving
M(1),M(2),..., M(h—1) when tackling the next MDP in
the sequence, M (h). Namely, observe that any (s, k') in the
augmented state space of any MDP M (k") also belongs to
the augmented states spaces of all MDPs M (h"”), b’ > h",
and V*(s, h') is the same for all these MDPs. Therefore, by
the time LR®TDP gets to solving M (h), values of many of
its states will have been updated or even converged as a re-
sult of handling some M (i), i < h. Accordingly, LR*TDP
memoizes values and convergence labels of all augmented
states ever visited by LRTDP-FH while solving for smaller
horizon values, and reuses them to solve subsequent MDPs
in the above sequence. Thus, solving M (h) takes LR2TDP
only an incremental effort over the solution of M (h — 1).
LR2TDP can be viewed as backchaining from the goal in
a goal-oriented MDP with no loops. Indeed, a finite-horizon
MDP M (H) is simply a goal-oriented MDP whose state
space is the augmented state space of M (H), and whose
goals are all states of the form (s, H). It has no loops be-
cause executing any action leads from some state (s, h) to
another state (s’,h — 1). LR2TDP essentially solves such
MDPs by first assuming that the goal is one step away from
the initial state, then two steps from the initial state, and
so on, until it addresses the case when the goal is H steps
away from the initial state. Compare this with LRTDP-FH’s
behavior when solving M (H). LRTDP-FH does not back-
track from the goal; instead, it tries to forward-chain from
the initial state to the goal (via trials) and propagates state
values backwards whenever it succeeds. As an alternative
perspective, LRTDP-FH iterates on the search depth, while
LR2TDP iterates on the distance from the horizon. The ben-

efit of the latter is that it allows for the reuse of computation
across different iterations.

Clearly, both LRTDP-FH and LR?TDP eventually arrive
at the optimal solution. So, what are the advantages of
LR2TDP over LRTDP-FH? We argue that if stopped pre-
maturely, the policy of LRZTDP is likely to be much better
for the following reasons:

e In many MDPs M (H), the optimal policy for M (h) for

some h << H is optimal or near-optimal for M (H) it-
self. E.g., consider a manipulator that needs to transfer
blocks regularly arriving on one conveyor belt onto an-
other belt. The manipulator can do one pick-up, move, or
put-down action per time step. It gets a unit reward for
moving each block, and needs to accumulate as much re-
ward as possible over 50 time steps. Delivering one block
from one belt to another takes at most 4 time steps: move
manipulator to the source belt, pick up a block, move ma-
nipulator to the destination belt, release the block. Re-
peating this sequence of actions over 50 time steps clearly
achieves maximum reward for M (50). In other words,
M (4)’s policy is optimal for M (50) as well.
Therefore, explicitly solving M (50) for all 50 time steps
is a waste of resources — solving M (4) is enough. How-
ever, LRTDP-FH will try to do the former — it will spend
a lot of effort trying to solve M for horizon 50 at once.
Since it “spreads” its effort over many time steps, it will
likely fail to completely solve M (h) for any h < H by the
deadline. Contrariwise, LR2TDP solves the given prob-
lem incrementally, and may have a solution for M (4) (and
hence for M (50)) if stopped prematurely.

e When LRTDP-FH starts running, many of its trials are
very long, since each trial halts only when it reaches a
converged state, and at the beginning reaching a con-
verged state takes about H time steps. Moreover, at the
beginning, each trial causes the convergence of only a few
states (those near the horizon), while the values of aug-
mented states with small time step values change very lit-
tle. Thus, the time spent on executing the trials is largely
wasted. In contrast, LRZTDP’s trials when solving an
MDP M (h) are very short, because they quickly run into
states that converged while solving M (h — 1) and before,
and often lead to convergence of most of trial’s states.
Hence, we can expect LR2TDP to be faster.

e As a consequence of large trial length, LRTDP-FH ex-
plores (and therefore memorizes) many augmented states
whose values (and policies) will not have converged by
the time the planning process is interrupted. Thus, it risks
using up available memory before it runs out of time, and
to little effect, since it will not know well how to behave
in most of the stored states anyway. In contrast, LR2TDP
typically knows how to act optimally in a large fraction of
augmented states in its memory.

Note that, incidentally, LR2TDP works in much the same
way as VI, raising a question: why not use VI in the first
place? The advantage of asynchronous dynamic program-
ming over VI is similar in finite-horizon settings and in goal-
oriented settings. A large fraction of the state space may be
unreachable from sg in general and by the optimal policy in
particular. LR2TDP avoids storing information about many

of these states, especially if guided by an informative heuris-
tic. In addition, in finite-horizon MDPs, many states are not
reachable from sg within H steps, further increasing poten-
tial savings from using LRZTDP.

So far, we have glossed over a subtle question: if
LR2TDP is terminated after solving M (h), h < H, what
policy should it use in augmented states (s,h’) that it has
never encountered? There are two cases to consider — a)
LR2TDP may have solved s for some h” < min{h, h'},
and b) LR?2TDP has not solved (or even visited) s for
any time step. In the first case, LR?TDP can simply find
the largest value h” < min{h,h’} for which (s,h”) is
solved and return the optimal action for (s,h”). This is
the approach we use in GLUTTON, our implementation of
LR2TDP, and it works well in practice. Case b) is more
complicated and may arise, for instance, when s is not reach-
able from sg within & steps. One possible solution is to fall
back on some simple default policy in such situations. We
discuss this option when describing the implementation of
GLUTTON.

Max-Reward Heuristic

To converge to an optimal solution, LR?TDP needs to be
initialized with an admissible heuristic, i.e., an upper bound
on V*. For this purpose, GLUTTON uses an estimate we call
the Max-Reward heuristic. Its computation hinges on know-
ing the maximum reward R,,,, any action can yield in any
state, or an upper bound on it. R,,,, can be automatically
derived for an MDP at hand with a simple domain analysis.

To produce a heuristic value Vg(s, h) for (s, h), Max-
Reward finds the largest horizon value A’ < h for which
GLUTTON already has an estimate V(s,h’). Recall that
GLUTTON is likely to have V' (s, h’) for some such 4/, since
it solves the given MDP in the reverse iterative deepening
fashion with LR2TDP. If so, Max-Reward sets Vy(s, h) =
V(s,h') + Rmaz(h — h'); otherwise, it sets V(s,h) =
Ryqazh. The bound obtained in this way is often very loose
but is guaranteed to be admissible.

The Challenge of Large Branching Factors

In spite of its good anytime behavior, LR?TDP by itself
would not perform well on many IPPC-2011 benchmarks
due to large branching factors in these MDPs. In real-world
systems, large branching factors often arise due to the pres-
ence of natural dynamics. Roughly, the natural dynamics
of an MDP describes what happens to various objects in the
system if the controller does not act on them explicitly in a
given time step. In physical systems, it can model laws of
nature, e.g. the effects of radioactive decay on a collection
of particles. It can also capture effects of exogenous events.

For instance, in the MDPs of Sysadmin (Sanner 2011),
one of IPPC-2011 domains, the task is to control a network
of servers. At any time step, each server is either up or down.
The controller can restart one server per time step, and that
server is guaranteed to be up at the next time step. The other
servers can change their state spontaneously — those that
are down can go back up with some small probability, and
those that are up can go down with a probability proportional
to the fraction of their neighbors that are down. These ran-
dom transitions are the natural dynamics of the system, and

they cause the MDP to have a large branching factor. Imag-
ine a Sysadmin problem with 50 servers. Due to the natural
dynamics, the system can transition to any of the 250 states
from any given one in just one time step.

The primary effect of a large branching factor on the
effectiveness of algorithms such as VI, RTDP, or AO* is
that computing Bellman backups (Equation 1) explicitly be-
comes prohibitively expensive, since the summation in it has
to be carried out over a large fraction of the state space. We
address this issue in the next section.

GLUTTON

In this section, we present GLUTTON, our LRZTDP-
based entry at the IPPC-2011 competition that endows
LR?TDP with mechanisms for efficiently handling
natural dynamics and other optimizations. Below
we describe each of these optimizations in detail.
A C++ implementation of GLUTTON is available at
http://www.cs.washington.edu/ai/planning/glutton.html.

Subsampling the Transition Function. GLUTTON’s way
of dealing with a high-entropy transition function is to sub-
sample it. For each encountered state-action pair (s,a),
GLUTTON samples a set U, , of successors of s under a,
and performs Bellman backups using states in Uy ,:

* ~ ! Y

V*(s,h) ~ max R(s,a) + Z T(s,a,8)V*(s';h—1)
s'€Us,a
2)

The size of Uy, is chosen to be much smaller than the
number of states to which a could transition from s. There
are several heuristic ways of setting this value, e.g. based
on the entropy of the transition function. At IPPC-2011 we
chose |Us | for a given problem to be a constant.

Subsampling can give an enormous improvement in
efficiency for GLUTTON at a reasonably small reduction
in the solution quality compared to full Bellman backups.
However, subsampling alone does not make solving many
of the IPPC benchmarks feasible for GLUTTON. Consider,
for instance, the aforementioned Sysadmin example with
50 servers (and hence 50 state variables). There is a total
of 51 ground actions in the problem, one for restarting
each server plus a noop action. Each action can potentially
change all 50 variables, and the value of each variable is
sampled independently from the values of others. Suppose
we set |Us o] = 30. Even for such a small size of U, ,,
determining the current greedy action in just one state
could require 51 - (50 - 30) = 76,500 variable sampling
operations. Considering that the procedure of computing
the greedy action in a state may need to be repeated billions
of times, the need for further improvements, such as those
that we describe next, quickly becomes evident.

Separating Out Natural Dynamics. One of our key ob-
servations is the fact that the efficiency of sampling succes-
sor states for a given state can be drastically increased by
reusing some of the variable samples when generating suc-
cessors for multiple actions. To do this, we separate each
action’s effect into those due to natural dynamics (exoge-
nous effects), those due to the action itself (pure effects),
and those due to some interaction between the two (mixed

effects). More formally, assume that an MDP with natural
dynamics has a special action noop that captures the effects
of natural dynamics when the controller does nothing. In
the presence of natural dynamics, for each non-noop action
a, the set X’ of problem’s state variables can be represented
as a disjoint union

_ yex pure mized none
X =&7"0uxP"euXx; U A,
Moreover, for the noop action we have

X = (Uastnoop (X" U XJrimed)) U xone

where X * are variables acted upon only by the exogenous
effects, XP“"¢ — only by the pure effects, X#¢d — by
both the exogenous and pure effects, and X'°" are not af-
fected by the action at all. For example, in a Sysadmin prob-
lem with n machines, for each action a other than the noop,
| XPure| = 0, |X*| = n — 1, and | XJ°™¢| = 0, since nat-
ural dynamics acts on any machine unless the administrator
restarts it. |X%¢d| = 1, consisting of the variable for the
machine the administrator restarts. Notice that, at least in
the Sysadmin domain, for each non-noop action a, |X&%|
is much larger than | X?47¢| + | X™zed| Intuitively, this is
true in many real-world domains as well — natural dynam-
ics affects many more variables than any single non-noop
action. These observations suggest generating |Us 00| SUC-
cessor states for the noop action, and then modifying these
samples in order to obtain successors for other actions by
resampling some of the state variables using each action’s
pure and mixed effects.

We illustrate this technique on the example of approx-
imately determining the greedy action in some state s of
the Sysadmin-50 problem. Namely, suppose that for each
action a in s we want to sample a set of successor states
Us o to evaluate Equation 2. First, we generate |Us no0p)
noop sample states using the natural dynamics (i.e., the
noop action). Setting |Us n00p| = 30 for the sake of the
example, this takes 50 - 30 = 1500 variable sampling
operations, as explained previously. Now, for each resulting
s’ € Us noop and each a # noop, we need to re-sample
variables XP4¢ U Xmi*ed and substitute their values into s’
Since |XPure U xiwed| = 1, this takes one variable sam-
pling operation per action per s’ € Us y00p- Therefore, the
total number of additional variable sampling operations to
compute sets Us , for all a # noop is 30 noop state samples-
1 variable sample per non-noop action per noop state sample-
50 non-noop actions = 1500. This gives us 30 state samples
for each non-noop action. Thus, to evaluate Equation 2 in
a given state with 30 state samples per action, we have to
perform 1500 + 1500 = 3000 variable sampling operations.
This is about 25 times fewer than the 76,500 operations we
would have to perform if we subsampled naively. Clearly,
in general the speedup will depend on how “localized”
actions’ pure and mixed effects in the given MDP are
compared to the effects of natural dynamics.

The caveat of sharing the natural dynamics samples for
generating non-noop action samples is that the resulting
non-noop action samples are not independent, i.e. are bi-
ased. However, in our experience, the speedup from this
strategy (as illustrated by the above example) and associated

gains in policy quality when planning under time constraints
outweigh the disadvantages due to the bias in the samples.

We note that several techniques similar to subsampling
and separating natural dynamics have been proposed in
the reinforcement learning (Proper and Tadepalli 2006)
and concurrent MDP (Mausam and Weld 2004) literature.
An alternative way of increasing the efficiency of Bellman
backups is performing them on a symbolic value function
representation, e.g., as in symbolic RTDP (Feng, Hansen,
and Zilberstein 2003). A great improvement over Bellman
backups with explicitly enumerated successors, it nonethe-
less does not scale to many IPPC-2011 problems.

Caching the Transition Function Samples. In spite of
the already significant speedup due to separating out the
natural dynamics, we can compute an approximation to the
transition function even more efficiently. Notice that nearly
all the memory used by algorithms such as LR2TDP is
occupied by the state-value table containing the values for
the already visited (s, h) pairs. Since LR>TDP populates
this table lazily (as opposed to VI), when LR2TDP starts
running the table is almost empty and most of the available
memory on the machine is unused. Instead, GLUTTON uses
this memory as a cache for samples from the transition
function. That is, when GLUTTON analyzes a state-action
pair (s,a) for the first time, it samples successors of s
under a as described above and stores them in this cache
(we assume the MDP to be stationary, so the samples do
not need to be cached separately for each ((s, h),a) pair).
When GLUTTON encounters (s,a) again, it retrieves the
samples for it from the cache, as opposed to re-generating
them. Initially the GLUTTON process is CPU-bound,
but due to caching it quickly becomes memory-bound as
well. Thus, the cache helps it make the most of available
resources. When all of the memory is filled up, GLUTTON
starts gradually shrinking the cache to make room for the
growing state-value table. Currently, it chooses state-action
pairs for eviction and replacement randomly.

Default Policies. Since GLUTTON subsamples the transi-
tion function, it may terminate with an incomplete policy
— it may not know a good action in states it missed due
to subsampling. To pick an action in such a state (s,h’),
GLUTTON first attempts to use the trick discussed previ-
ously, i.e. to return either the optimal action for some solved
state (s,h”), h’/ < k', or a random one. However, if the
branching factor is large or the amount of available planning
time is small, GLUTTON may need to do such random “sub-
stitutions” for so many states that the resulting policy is very
bad, possibly worse than the uniformly random one.

As it turns out, for many MDPs there are simple cyclic
policies that do much better than the completely random
policy. A cyclic policy consists in repeating the same se-
quence of steps over and over again. Consider, for instance,
the robotic manipulator scenario from before. The optimal
policy for it repeats an action cycle of length 4. In general,
near-optimal cyclic policies are difficult to discover. How-
ever, it is easy to evaluate the set of primitive cyclic policies
for a problem, each of which repeats a single action.

This is exactly what GLUTTON does. For each action,
it evaluates the cyclic policy that repeats that action in any
state by simulating this policy several times and averaging

the reward. Then, it selects the best such policy and com-
pares it to three others, also evaluated by simulation: (1) the
“smart” policy computed by running LR2TDP with substi-
tuting random actions in previously unencountered states,
(2) the “smart” policy with substituting the action from the
best primitive cyclic policy in these states, and (3) the com-
pletely random policy. For the actual execution, GLUTTON
uses the best of these four. As we show in the Experiments
section, on several domains, pure primitive cyclic policies
turned out to be surprisingly effective.

Performance Analysis

Our goals in this section are threefold — a) to show the ad-
vantage of LR2TDP over LRTDP-FH, b) to show the effects
of the individual optimizations on GLUTTON’s performance,
and c¢) to compare the performance of GLUTTON at IPPC-
2011 to that of its main competitor, PROST.

We report results using the setting of IPPC-2011 (Sanner
2011). At IPPC-2011, the competitors needed to solve 80
problems. The problems came from 8 domains, 10 prob-
lems each. Within each domain, problems were numbered 1
through 10, with problem size/difficulty roughly increasing
with its number. All problems were reward-maximization
finite-horizon MDPs with the horizon of 40. They were
described in the new RDDL language (Sanner 2010), but
translations to the older format, PPDDL, were available and
participants could use them instead. The participants had a
total of 24 hours of wall clock time to allocate in any way
they wished among all the problems. Each participant ran on
a separate large instance of Amazon’s EC2 node (4 virtual
cores on 2 physical cores, 7.5 GB RAM).

The 8 benchmark domains at IPPC-2011 were Sysadmin
(abbreviated as Sysadm in figures in this section), Game of
Life (GoL), Traffic, Skill Teaching (Sk T), Recon, Cross-
ing Traffic (Cr Tr), Elevators (Elev), and Navigation (Nav).
Sysadmin, Game of Life, and Traffic domains are very large
(many with over 2°0 states). Recon, Skill Teaching, and El-
evators are smaller but require a larger planning lookahead
to behave near-optimally. Navigation and Crossing Traffic
essentially consist of goal-oriented MDPs. The goal states
are not explicitly marked as such; instead, they are the only
states visiting which yields a reward of 0, whereas the high-
est reward achievable in all other states is negative.

A planner’s solution policy for a problem was assessed
by executing the policy 30 times on a special server. Each of
the 30 rounds would consist of the server sending the prob-
lem’s initial state, the planner sending back an action for
that state, the server executing the action, noting down the
reward, and sending a successor state, and so on. After 40
such exchanges, another round would start. A planner’s per-
formance was judged by its average reward over 30 rounds.

In most of the experiments, we show planners’ normal-
ized scores on various problems. The normalized score of
planner P! on problem p always lies in the [0, 1] interval
and is computed as follows:

max{O, Sraw(Plap) - sbaseline(p)}
maxi{s'mw (Plup)} — Shaseline (p)
where 8.4, (Pl,p) is the average reward of the planner’s

policy for p over 30 rounds, max;{$;qw (Pl;, p) } is the max-
imum average reward of any IPPC-2011 participant on p,

sCorenorm(Pl,p) =

o 1
o

[5)

“os

g [—JGlutton-NO-ID
g o I Gutton

Sysadm GoL Traffic SkT Recon CrTr Elev Nav

Figure 1: Average normalized scores of GLUTTON and GLUT-
TON-NO-ID on all of the IPPC-2011 domains.

and Spgseline (p) = maX{Sraw (mmdom, p>7 Sraw (noop, p)}
is the baseline score, the maximum of expected rewards
yielded by the noop and random policies. Roughly, a plan-
ner’s score is its policy’s reward as a fraction of the highest
reward of any participant’s policy on the given problem.
We start by presenting the experiments that illustrate the
benefits of various optimizations described in this paper. In
these experiments, we gave different variants of GLUTTON
at most 18 minutes to solve each of the 80 problems (i.e.,
divided the available 24 hours equally among all instances).

Reverse Iterative Deepening. To demonstrate the power
of iterative deepening, we built a version of GLUTTON
denoted GLUTTON-NO-ID that uses LRTDP-FH instead
of LR2TDP. A-priori, we may expect two advantages of
GLUTTON over GLUTTON-NO-ID. First, according to the
intuition in the section describing LR2TDP, GLUTTON
should have a better anytime performance. That is, if GLUT-
TON and GLUTTON-NO-ID are interrupted 7" seconds after
starting to solve a problem, GLUTTON’s solution should be
better. Second, GLUTTON should be faster because GLUT-
TON’s trials are on average shorter than GLUTTON-NO-ID.
The length of the latter’s trials is initially equal to the hori-
zon, while most of the former’s end after only a few steps.
Under limited-time conditions such as those of IPPC-2011,
both of these advantages should translate to better solution
quality for GLUTTON. To verify this prediction, we ran
GLUTTON-NO-ID under IPPC-2011 conditions (i.e. on a
large instance of Amazon EC2 with a 24-hour limit) and
calculated its normalized scores on all the problems as if
it participated in the competition.

Figure 1 compares GLUTTON and GLUTTON-NO-ID’s
results. On most domains, GLUTTON-NO-ID performs
worse than GLUTTON, and on Sysadmin, Elevators,
and Recon the difference is very large. This is a direct
consequence of the above theoretical predictions. Both
GLUTTON-NO-ID and GLUTTON are able to solve small
instances on most domains within allocated time. However,
on larger instances, both GLUTTON-NO-ID and GLUTTON
typically use up all of the allocated time for solving the
problem, and both are interrupted while solving. Since
GLUTTON-NO-ID has worse anytime performance, its solu-
tions on large problems tend to be worse than GLUTTON’s.
In fact, the Recon and Traffic domains are so complicated
that GLUTTON-NO-ID and GLUTTON are almost always
stopped before finishing to solve them. As we show when
analyzing cyclic policies, on Traffic both planners end up
falling back on such policies, so their scores are the same.
However, on Recon cyclic policies do not work very well,
causing GLUTTON-NO-ID to fail dramatically due to its
poor anytime performance.

Separating out Natural Dynamics. To test the impor-
tance of separating out natural dynamics, we create a ver-
sion of our planner, GLUTTON-NO-SEP-ND, lacking this

[y

o
3]

1 Glutton-NO-SEP-ND
I Giutton

Sysadm GoL Traffic SkT Recon CrTr Elev Nav
Figure 2: Average normalized scores of GLUTTON and GLUT-
TON-NO-SEP-ND on all of the IPPC-2011 domains.

Norm. Score

feature. Namely, when computing the greedy best action
for a given state, GLUTTON-NO-SEP-ND samples the tran-
sition function of each action independently. For any given
problem, the number of generated successor state samples
N per state-action pair was the same for GLUTTON and
GLUTTON-NO-SEP-ND, but varied slightly from problem
to problem. To gauge the performance of GLUTTON-NO-
SEP-ND, we ran it on all 80 problems under the IPPC-2011
conditions. We expected GLUTTON-NO-SEP-ND to per-
form worse overall — without factoring out natural dynam-
ics, sampling successors should become more expensive, SO
GLUTTON-NO-SEP-ND’s progress towards the optimal so-
lution should be slower.

Figure 2 compares the performance of GLUTTON and
GLUTTON-NO-SEP-ND. As predicted, GLUTTON-NO-
SEP-ND’s scores are noticeably lower than GLUTTON’s.
However, we discovered the performance pattern to be richer
than that. As it turns out, GLUTTON-NO-SEP-ND solves
small problems from small domains (such as Elevators, Skill
Teaching, etc.) almost as fast as GLUTTON. This effect is
due to the presence of caching. Indeed, sampling the suc-
cessor function is expensive during the first visit to a state-
action pair, but the samples get cached, so on subsequent
visits to this pair neither planner incurs any sampling cost.
Crucially, on small problems, both GLUTTON and GLUT-
TON-NO-SEP-ND have enough memory to store the sam-
ples for all state-action pairs they visit in the cache. Thus,
GLUTTON-NO-SEP-ND incurs a higher cost only at the ini-
tial visit to a state-action pair, which results in an insignifi-
cant speed increase overall.

In fact, although this is not shown explicitly in Figure 2,
GLUTTON-NO-SEP-ND occasionally performs better than
GLUTTON on small problems. This happens because for a
given state, GLUTTON-NO-SEP-ND-produced samples for
all actions are independent. This is not the case with GLUT-
TON since these samples are derived from the same set of
samples from the noop action. Consequently, GLUTTON’s
samples have more bias, which makes the set of samples
somewhat unrepresentative of the actual transition function.

The situation is quite different on larger domains such as
Sysadmin. On them, both GLUTTON and GLUTTON-NO-
SEP-ND at some point have to start shrinking the cache to
make space for the state-value table, and hence may have
to resample the transition function for a given state-action
pair over and over again. For GLUTTON-NO-SEP-ND, this
causes an appreciable performance hit, immediately visible
in Figure 2 on the Sysadmin domain.

Caching Transition Function Samples. To demonstrate
the benefits of caching, we pit GLUTTON against its clone
without caching, GLUTTON-NO-CACHING. GLUTTON-
NO-CACHING is so slow that it cannot handle most IPPC-
2011 problems. Therefore, to show the effect of caching we
run GLUTTON and GLUTTON-NO-CACHING on instance 2
of six IPPC-2011 domains (all domains but Traffic and Re-

N
o
o

[Jclutton-NO-CACHING

- Glutton

Time (sec)
B
o
o

Sysadm GoL SkT CrTr Elev Nav
Problem 2 of ...

Figure 3: Time it took GLUTTON with and without caching to
solve problem 2 of six IPPC-2011 domains.

con, whose problem 1 is already very hard), and record the
amount of time it takes them to solve these instances. In-
stance 2 was chosen because it is harder than instance 1 and
yet is easy enough that GLUTTON can solve it fairly quickly
on all six domains both with and without caching.

As Figure 3 shows, even on problem 2 the speed-up due
to caching is significant, reaching about 2.5x on the larger
domains such as Game of Life, i.e. where it is most needed.
On domains with big branching factors, e.g. Recon, caching
makes the difference between success and utter failure.

Cyclic Policies. The cyclic policies evaluated by GLUT-
TON are seemingly so simple that it is hard to believe they
ever beat the policy produced after several minutes of GLUT-
TON’s “honest” planning. Indeed, on most problems GLUT-
TON does not resort to them. Nonetheless, they turn out to
be useful on a surprising number of problems. Consider,
for instance, Figures 4 and 5. They compare the normal-
ized scores of GLUTTON’s “smart” policy produced at IPPC-
2011, and the best primitive cyclic policy across various
problems from these domains.

On Game of Life (Figure 4), GLUTTON’s “smart” policies
for the easier instances clearly win. At the same time, notice
that as the problem size increases, the quality of cyclic
policies nears and eventually exceeds that of the “smart”
policies. This happens because the increase in difficulty
of problems within the domain is not accompanied by a
commensurate increase in time allocated for solving them.
Therefore, the quality of the “smart” policy GLUTTON can
come up with within allocated time keeps dropping, as
seen on Figure 4. Granted, on Game of Life the quality
of cyclic policies is also not very high, although it still
helps GLUTTON score higher than O on all the problems.
However, the Traffic domain proves (Figure 5) that even
primitive cyclic policies can be very powerful. On this
domain, they dominate anything GLUTTON can come up
with on its own, and approach in quality the policies of
PROST, the winner on this set of problems. It is due to them
that GLUTTON performed reasonably well at IPPC-2011
on Traffic. Whether the success of primitive cyclic policies
is particular to the structure of IPPC-2011 or generalizes
beyond them is a topic for future research.

Comparison with PROST. On nearly all IPPC-2011 prob-
lems, either GLUTTON or PROST was the top performer,
so we compare GLUTTON’s performance only to PROST’s.
When looking at the results, it is important to keep in mind
one major difference between these planners. PROST (Keller
and Eyerich 2012) is an online planner, whereas GLUTTON
is an offline one. When given n seconds to solve a problem,
GLUTTON spends this entire time trying to solve the prob-
lem from the initial state for as large a horizon as possible
(recall its reverse iterative deepening strategy).

Instead, PROST plans online, only for states it gets from
the server. As a consequence, it has to divide up the n sec-

1

== Cyclic Policy
0.5 "Smart" Policy

Norm. Score

0 Il Il Il Il Il Il Il Il J
1 2 3 4 5 6 7 8 9 10

Game of Life Problem #
Figure 4: Normalized scores of the best primitive cyclic policies
and of GLUTTON’s “smart” policies on Game of Life.

()
5 1
3
= 0.5 Cyclic Policy
S "Smart" Policy
0 L L L L L]
2 9 2 3 4 7 8 9 10

5 6
Traffic Problem #
Figure 5: Normalized scores of the best primitive cyclic policies
and of the “smart” policies produced by GLUTTON on Traffic.

onds into smaller time intervals, each of which is spent plan-
ning for a particular state it receives from the server. Since
these intervals are short, it is unreasonable to expect PROST
to solve a state for a large horizon value within that time.
Therefore, PROST explores the state space only up to a pre-
set depth from the given state, which, as far as we know
from personal communication with PROST’s authors, is 15.
Both GLUTTON’s and PROST’s strategies have their disad-
vantages. GLUTTON may spend considerable effort on states
it never encounters during the evaluation rounds. Indeed,
since each IPPC-2011 problem has horizon 40 and needs
to be attempted 30 times during evaluation, the number of
distinct states for which performance “really matters” is at
most 30 - 39 + 1 = 1171 (the initial state is encountered 30
times). The number of states GLUTTON visits and tries to
learn a policy for during training is typically many orders of
magnitude larger. On the other hand, PROST, due to its arti-
ficial lookahead limit, may fail to produce good policies on
problems where most high-reward states can only be reached
after > 15 steps from (sg, H), e.g., goal-oriented MDPs.

During IPPC-2011, GLUTTON used a more efficient strat-
egy of allocating time to different problems than simply di-
viding the available time equally, as we did for the ablation
studies. Its high-level idea was to solve easy problems first
and devote more time to harder ones. To do so, GLUTTON
first solved problem 1 from each domain. Then it kept re-
distributing the remaining time equally among the remain-
ing problems and picking the next problem from the domain
whose instances on average had been the fastest to solve. As
aresult, the hardest problems got 40-50 minutes of planning.

Figure 6 shows the average of GLUTTON’s and PROST’s
normalized scores on all IPPC domains, with GLUTTON us-
ing the above time allocation approach. Overall, GLUTTON
is much better on Navigation and Crossing Traffic, at par on
Elevators, slightly worse on Recon and Skill Teaching, and
much worse on Sysadmin, Game of Life, and Traffic.

As it turns out, GLUTTON’s success and failures have
fairly a clear pattern. Sysadmin, Game of Life, and Traf-
fic, although very large, do not require a large lookahead to
produce a reasonable policy. That is, although the horizon
of all these MDPs is 40, for many of them the optimal pol-
icy with a lookahead of only 4-5 has a good performance.
As a result, GLUTTON’s attempts to solve the entire prob-
lem offline do not pay off — by timeout, GLUTTON learns
how to behave well only in the initial state and many of the
states at depths 2-3 from it. However, during policy execu-
tion it often ends up in states it failed to even visit during the
training stage, and is forced to resort to a default policy. It

Norm. Score

Sysadm GoL Traffic SkT Recon CrTr Elev Nav
Figure 6: Average normalized scores of GLUTTON and PROST on
all of the IPPC-2011 domains.

fails to visit these states not only because it subsamples the
transition function, but also because many of them cannot be
reached from the initial state within a small number of steps.
On the other hand, PROST copes with such problems well.
Its online nature ensures that it does not waste as much effort
on states it ends up never visiting, and it knows what to do
(at least to some degree) in all the states encountered during
evaluation rounds. Moreover, trying to solve each such state
for only horizon 15 allows it to produce a good policy even
if it fails to converge within the allocated time.

Recon, Skill Teaching, and Elevators are smaller, so be-
fore timeout, GLUTTON manages to either solve them com-
pletely or explore their state spaces to significant horizon
values and visit most of their states at some distance from
sp. Therefore, although GLUTTON still has to use default
policies in some states, in most states it has a good policy.

In Navigation and Crossing Traffic, the distance from
(so, H) to the goal (i.e., highest-reward states) is often larger
than PROST’s lookahead of 15. This means that PROST of-
ten does not see goal states during the learning stage, and
hence fails to construct a policy that aims for them. Con-
trariwise, GLUTTON, due to its strategy of iterative deepen-
ing, can usually find the goal states and solve for a policy
that reaches them with high probability.

Conclusion

Unlike previous planning competitions, IPPC-2011 empha-
sized finite-horizon reward maximization problems with
large branching factors. In this paper, we presented
LR?TDP, a novel LRTDP-based optimal algorithm for
finite-horizon problems centered around the idea of reverse
iterative deepening and GLUTTON, our LR2TDP-based
planner at IPPC-2011 that performed well on these chal-
lenging MDPs. To achieve this, GLUTTON includes several
important optimizations — subsampling the transition func-
tion, separating out natural dynamics, caching the transition
function samples, and using primitive cyclic policies as the
default solution. We presented an experimental evaluation
of GLUTTON’s core ideas and a comparison of GLUTTON to
the IPPC-2011 top-performing planner, PROST.

GLUTTON and PROST have complementary strengths,
with GLUTTON demonstrating superior performance on
problems with goal states, although PROST won overall.
Since PROST is based on UCT and GLUTTON — on
LRTDP, it is natural to ask: is UCT a better algorithm for
finite-horizon MDPs, or would LR2TDP outperform UCT
if LR2TDP were used online? A comparison of an online
version of GLUTTON and PROST should provide an answer.

Acknowledgments. We would like to thank Thomas Keller
and Patrick Eyerich from the University of Freiburg for valu-
able information about PROST, and the anonymous review-
ers for insightful comments. This work has been supported
by NSF grant I1S-1016465, ONR grant N00014-12-1-0211,
and the UW WREF/TJ Cable Professorship.

References

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programming. Artificial Intelligence 72:81-138.
Bellman, R. 1957. Dynamic Programming. Princeton University
Press.

Bertsekas, D. 1995. Dynamic Programming and Optimal Control.
Athena Scientific.

Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving the
convergence of real-time dynamic programming. In /ICAPS’03, 12—
21.

Bryce, D., and Buffet, O. 2008. International planning compe-
tition, uncertainty part: Benchmarks and results. In http://ippc-
2008.loria.fr/wiki/images/0/03/Results.pdf.

Feng, Z.; Hansen, E. A.; and Zilberstein, S. 2003. Symbolic gen-
eralization for on-line planning. In UAI, 109-116.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253-302.

Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Planning
Based on UCT. In ICAPS’12.

Mausam, and Weld, D. S. 2004. Solving concurrent markov deci-
sion processes. In AAAI’04.

Nilsson, N. 1980. Principles of Artificial Intelligence. Tioga Pub-
lishing.

Proper, S., and Tadepalli, P. 2006. Scaling model-based average-
reward reinforcement learning for product delivery. In ECML, 735—
742.

Puterman, M. 1994. Markov Decision Processes. John Wiley &
Sons.

Sanner, S. 2010. Relational dynamic influence
diagram language (RDDL): Language description.
http://users.cecs.anu.edu.au/Ssanner/IPPC_2011/RDDL.pdf.
Sanner, S. 2011. ICAPS 2011 international probabilistic planning
competition. http://users.cecs.anu.edu.au/§sanner/IPPC_2011/.
Teichteil-Koenigsbuch, F.; Infantes, G.; and Kuter, U. 2008. RFF:
A robust, FF-based MDP planning algorithm for generating poli-
cies with low probability of failure. In Sixth International Planning
Competition at ICAPS’08.

Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A baseline for
probabilistic planning. In ICAPS’07, 352-359.

