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Abstract

Many organizations today have more than very large databases; they have databases
that grow without limit at a rate of several million records per day. Mining these continuous
data streams brings unique opportunities, but also new challenges. In this paper we present
a method that can semi-automatically enhance a wide class of existing learning algorithms
so they can learn from such high-speed data streams in real time. The method works by
sampling just enough data from the data stream to make each decision required by the
learning process. The method is applicable to essentially any induction algorithm based
on discrete search. After its application, the algorithm: learns from data streams in an
incremental, any-time fashion; runs in time independent of the amount of data seen, while
making decisions that are essentially identical to those that would be made from infinite
data; uses a constant amount of RAM no matter how much data it sees; and adjusts
its learned models in a fine-grained manner as the data-generating process changes over
time. We evaluate our method by using it to produce two systems: the VFDT system
for learning decision trees from massive data streams; and CVFDT, an enhanced version
of VFDT that keeps the trees it learns up-to-date as the data-generating process changes
over time. We evaluate these learners with extensive studies on synthetic data sets, and by
mining the continuous stream of Web access data from the whole University of Washington
main campus.

Keywords: Data streams, concept drift, data mining, decision trees, scalable learning
algorithms, subsampling, Hoeffding bounds

1. Introduction

Machine learning systems are constrained by three main limited resources: time, memory
and sample size. In traditional applications, sample size tends to be the dominant limitation:
the computational resources for a massive search are available, but carrying out such a
search over the small samples available (typically less than 10,000 examples) often leads
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to overfitting (e.g., Webb (1995), Quinlan and Cameron-Jones (1995), Domingos (1998),
Jensen and Cohen (2000)). Thus overfitting avoidance becomes the main concern, and only
a fraction of the available computational power is used (Dietterich, 1995). In contrast, in
many (if not most) present-day data mining applications, the bottleneck is time and memory,
not examples. The latter are typically in over-supply, in the sense that it is impossible with
current learning systems to make use of all of them within the available computational
resources. As a result, most of the available examples go unused, and underfitting may
result: enough data to model very complex phenomena is available, but inappropriately
simple models are produced because we are unable to take full advantage of the data. Thus
the development of highly efficient algorithms becomes a priority.

Currently, the most efficient algorithms available (e.g., Shafer et al. (1996)) concentrate
on making it possible to mine databases that do not fit in main memory by only requiring
sequential scans of the disk. But even these algorithms have only been tested on up to a
few million examples. In many applications this is less than a day’s worth of data. For
example, every day WalMart records on the order of 20 million sales transactions, Google
handles on the order of 150 million searches, AT&T produces on the order of 275 million
call records, large banks process millions of ATM and credit card transactions, scientific
data collection (e.g. by earth sensing satellites or astronomical observatories) produces
gigabytes of data, and popular Web sites log millions of hits. As the expansion of the
Internet continues and ubiquitous computing becomes a reality, we can expect that such
data volumes will become the rule rather than the exception. In these domains a few months
worth of data can easily add up to billions of records, and the entire history of transactions
or observations can be in the hundreds of billions. Current algorithms for mining complex
models from data (e.g., decision trees, rule sets) cannot mine even a fraction of this data
in useful time. In particular, mining a day’s worth of data can easily take more than a
day of CPU time, and as a result data accumulates faster than it can be mined, some data
remains permanently unexplored, and the quantity of this unexplored data grows without
bound as time progresses. Even simply preserving the examples for future use can be a
problem when they need to be sent to tertiary storage, are easily lost, corrupted, or become
unusable when the relevant contextual information is no longer available. For all of these
reasons, when the source of examples is an open-ended data stream, the notion of mining a
database of fixed size itself becomes questionable and determining how much data should
be gathered before any mining can occur becomes a key challenge.

A further problem is that most statistical and machine learning algorithms make the
assumption that training data is a random sample drawn from a stationary distribution.
Unfortunately, most of the large databases and data streams available for mining today
violate this assumption. They exist over months or years, and the underlying processes
generating them change during this time, sometimes radically. For example, a new product
or promotion, a hacker’s attack, a holiday, changing weather conditions, changing economic
conditions, or a poorly calibrated sensor can all lead to violations of this assumption. For
classification systems, which attempt to learn a discrete function given examples of its
inputs and outputs, this problem takes the form of changes in the target function over time,
and is known as concept drift (Widmer and , eds.). Traditional systems learn incorrect
models when they erroneously assume that the underlying concept is stationary if in fact it
is drifting.
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Ideally, we would like to have learning systems that operate continuously and indef-
initely, incorporate examples as they arrive, never lose potentially valuable information,
that work within strict resource constraints, and keep the models they learn up-to-date as
concepts drift over time. In this paper we develop and evaluate a framework that is capable
of semi-automatically scaling up learning algorithms from a broad class to work in these
situations, and thus to successfully mine massive data streams. The framework works by
limiting the quantity of data used at each step of the algorithm, while guaranteeing that the
decisions made do not differ significantly from those that would be made given infinite data.
It is applicable to essentially any learning algorithm based on discrete search, where, at each
step, a number of candidate models or model components are considered, and the best one
or ones are selected based on their performance on a sample from the domain of interest.
The method is applicable to a range of search types including greedy, hill-climbing, beam,
multiple-restart, lookahead, best-first, genetic, etc. It is applicable to common algorithms
for decision tree and rule induction, instance-based learning, feature selection, model selec-
tion, parameter setting, probabilistic classification and clustering, probability estimation in
discrete spaces, etc., as well as to their combinations.

In Section 2 we describe our scaling framework in detail, its properties, and some ex-
tensions that allow it to be applied in practical settings. This framework is the first of
three main contributions of this paper: it meets a set of requirements that, to our knowl-
edge, are not met by any previous machine learning or data mining framework. Section 3
describes VFDT, a decision tree induction algorithm capable of learning from high-speed
data streams. VFDT was created by applying the ideas developed in our framework to a
standard decision tree induction algorithm. Sections 4 and 5 describe empirical evaluations
of VFDT on synthetic data (in Section 4) and on a Web caching application (in Section 5).
These three sections combine to form the second main contribution of this paper: they show
how our framework can be used to scale up an existing learning algorithm and demonstrate
that the resulting algorithm outperforms existing ones in terms of features, runtime, and
quality of the models it learns. Section 6 describes CVFDT, the third main contribution
of this paper. CVFDT extends VFDT to time-changing domains by taking advantage of
our method’s ability to handle concept drift. We explore related work in Section 7, discuss
future work in Section 8, and conclude in Section 9.

2. A General Method for Scaling Up Learning Algorithms

Consider the following simple problem. We are given two classifiers A and B, and an
infinite data stream of iid (independent and identically distributed) examples. We wish to
determine which of the two classifiers is more accurate on the data stream. If we want to
be absolutely sure of making the correct decision, we have no choice but to apply the two
classifiers to every example in the data stream, taking infinite time. If, however, we are
willing to accommodate a probability δ of choosing the wrong classifier, we can generally
make a decision in finite time, taking advantage of statistical results that give confidence
intervals for the mean of a variable. One such result is known as Hoeffding bounds or additive
Chernoff bounds (Hoeffding, 1963). Consider a real-valued random variable r whose range
is R. Suppose we have made n independent observations of this variable, and computed
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their mean r. One form of Hoeffding bound states that, with probability 1 − δ, the true
mean of the variable is at least r − ε, where

ε =

√

R2 ln(1/δ)

2n
(1)

Let r be the difference in accuracy between the two classifiers on the first n examples in
the data stream, and assume without loss of generality that it is positive. Then, if r > ε, the
Hoeffding bound guarantees that with probability 1 − δ the classifier with higher accuracy
on those n examples is also the more accurate one on the entire infinite data source. In
other words, in order to make the correct decision with error probability δ, it is sufficient
to observe enough examples to make ε smaller than r.

The only case in which this procedure does not yield a decision in finite time occurs
when the two classifiers have exactly the same accuracy. No number of examples will then
suffice to find a winner. In this case we do not care which classifier wins because their
performance on the metric we are interested in is the same. If we stipulate a minimum
difference in accuracy τ below which we are indifferent as to which classifier is chosen, the
procedure above is guaranteed to terminate after seeing at most n = d 1

2 (R/τ)2 ln(1/δ)e
examples. In other words, the time required to choose a classifier is constant, independent
of the size of the data stream.

The Hoeffding bound has the very attractive property that it is independent of the
probability distribution generating the observations. The price of this generality is that
the bound is more conservative than distribution-dependent ones (i.e., it will take more
observations to reach the same δ and ε). An alternative is to use a normal bound, which
assumes r is normally distributed. (By the central limit theorem, this will always be ap-
proximately true after some number of samples.) In this case, ε is the value of r − r for
which Φ((r−r)/σr) = 1−δ, where Φ() is the standard normal distribution function.1 Either
way, we can view a bound as a function f(δ, n, s) that returns the maximum ε by which the
true mean of r is smaller than the sample mean r, given a desired confidence 1 − δ, sample
size n, and any sufficient statistics s needed from the sample (for example, s = (

∑

xi,
∑

s2
i )

when using the normal bound with unknown variance).

Suppose now that, instead of two classifiers, we wish to find the best one among b.
Making the correct choice requires that each of the b − 1 comparisons between the best
classifier and all others have the correct outcome (i.e., that the classifier that is best on
finite data also be best on infinite data). If the probability of error in each of these decisions
is δ, then by the union bound the probability of error in any of them, and thus in the global
decision, is at most (b − 1)δ. Thus, if we wish to choose the best classifier with error
probability at most δ∗, it suffices to use δ = δ∗/(b − 1) in the bound function f(δ, n, s) for
each comparison. Similarly, if we wish to find the best a classifiers among b with probability
of error at most δ∗, a(b − a) comparisons need to have the correct outcome, and to ensure
that this is the case with probability of error at most δ, it suffices to require that the
probability of error for each individual comparison be at most δ∗/[a(b − a)].

Suppose now that we wish to find the best classifier by a search process composed of d
steps, at each step considering at most b candidates and choosing the best a. For the search

1. If the variance σ
2

r is estimated from data, the Student t distribution is used instead.
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process with finite data to output the same classifier as with infinite data with probability
at least 1 − δ∗, it suffices to use δ = δ∗/[da(b − a)] in each comparison. Thus, in each
search step, we need to use enough examples ni to make εi = f(ni, δ

∗/[da(b − a)], s) < ri,
where ri is the difference in accuracy between the ath and (a + 1)th best classifiers (on ni

examples, at the ith step). As an example, for a hill-climbing search of depth d and breadth
b, the required δ would be δ∗/db. This result is independent of the process used to generate
candidate classifiers at each search step (as long as this process does not itself access the
data), and of the order in which search steps are performed. It is applicable to randomized
search processes, if we assume that the outcomes of random decisions are the same in the
finite- and infinite-data cases.2

In general, we do not know in advance how many examples will be required to make
εi < ri for all alternatives at step i. Instead, we can scan ∆n examples from the data stream
or data, and check whether the goal has been met. Let f−1(ε, δ, s) be the inverse of the
bound function, yielding the number of samples n needed to reach the desired ε and δ. (For
the Hoeffding bound, n = d 1

2(R/ε)2 ln(1/δ)e.) Recall that τ is the threshold of indifference
below which we do not care which classifier is more accurate. Then, in any given search
step, at most c = df−1(τ, δ, s)/∆ne goal checks will be made. Since a mistake could be
made in any one of them (i.e., an incorrect winner could be chosen), we need to use enough
examples ni at each step i to make εi = f(ni, δ

∗/[cda(b − a)], s) < ri.

This procedure applies when the evaluation function is decomposable into an average
(or sum) over training examples, as is the case for training set accuracy. It also applies for
more complex evaluation functions, where each training example’s contribution is a function
of averages (or sums) of other properties of the training data. For instance, when the
evaluation function is entropy the score depends on the example’s class and the distribution
of the classes of the other relevant examples. Computing an exact value for ri for such
evaluation functions requires an exact value for each contributing average (or sum), which
requires access to all the training data, and thus is not possible when learning from an
open-ended data stream. Instead, we use f(.) to bound these contributing elements, use
these to obtain a high confidence upper and lower bound on the evaluation of each classifier,
and collect enough examples in each search step so that the lower bound on the evaluation
of the ath classifier is higher than the upper bound of the a + 1th. Let this difference be
r−i , and let q be the maximum number of applications of f(.) needed to compute the bound
on the evaluation function. We need to use enough examples ni at each step i to make
εi = f(ni, δ

∗/[cda(b− a)q], s) < r−i . (See Section 3.1 for an example of how to do this when
the evaluation function is information gain.)

Notice that nothing in the treatment above requires that the models being compared
be classifiers. The treatment is applicable to any inductive model — be it for classification,
regression, probability estimation, clustering, ranking, etc. — and to comparisons between
components of models as well as between whole models. This leads to the general method
for scaling up learning algorithms shown in Tables 1 and 2.

The key properties of this method are summarized in the following proposition. Let tGen

be the total time spent by L∗ generating candidates, and let tSel be the total time spent

2. This excludes simulated annealing, because in this case the outcome probabilities depend on the observed
differences in performance between candidates. Extending our treatment to this case is a matter for future
work.
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Table 1: Method for scaling up learning algorithms.

Given:
An iid sample T = {X1, X2, . . . , X|T |}.

A real-valued evaluation function E(M,x, T ) to be maximized, where M is
a model (or model component), x is an example, E(M,x, T, δ)− and
E(M,x, T, δ)+ are respectively high-confidence lower and upper bounds
on E(M,x, T, δ), and q is the maximum number of applications of f
needed to compute E()+ and E()−.

A learning algorithm L that finds a model by performing at most
d search steps, at each step considering at most b candidates

and selecting the a with highest E(M,T ) = 1
|T |

∑

x∈T E(M,x, T ).

A desired maximum error probability δ∗.
A threshold of indifference τ .
A bound function f(n, δ, s).
A block size ∆n.

Modify L, yielding L∗, by at each step replacing the selection of

the a candidates with highest E(M,T ) with a call to
SelectCandidates(M), where M is the set of candidates at that step.

Table 2: The SelectCandidates subroutine of our method.

Procedure SelectCandidates(M)
Let n = 0.
Repeat

If n + ∆n > |T | then let n′ = |T |.
Else let n′ = n + ∆n.
For each M ∈ M

Let Σ(M)− =
∑n′

i=1 E(M,Xi, {X1 . . . Xn′}, δ∗/[cda(b − a)q])−.

Let Σ(M)+ =
∑n′

i=1 E(M,Xi, {X1 . . . Xn′}, δ∗/[cda(b − a)q])+.

Let E(M,T ′)− = Σ(M)−/n′.

Let E(M,T ′)+ = Σ(M)+/n′.

Let M′ = {M ∈ M : M has one of the a highest E(M,T ′)− in M}.
n = n′.

Until [∀(Mi ∈ M′,Mj ∈ M−M′)

f(n, δ∗/[cda(b − a)q], s) < E(Mi, T
′)− − E(Mj , T

′)+

or f(n, δ∗/[cda(b − a)q], s) < τ or n = |T |].
Return M′.
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by it in calls to SelectCandidates(M), including data access. Let L∞ be L with |T | = ∞,
and U be the first terminating condition of the “repeat” loop in SelectCandidates(M) (see
Table 2).

Proposition 1 If tSel > tGen and |T | > c∆n, the time complexity of L∗ is O(db(a + cδn)).
With probability at least 1 − δ∗, L∗ and L∞ choose the same candidates at every step for
which U is satisfied. If U is satisfied at all steps, L∗ and L∞ return the same model with
probability at least 1 − δ∗.

c is an upper bound on the number of times SelectCandidates will be called for any search
step, because after that a tie will be called (and the search step will be ended). Each of
these c calls incorporate ∆n more examples into the sufficient statistics for each of the b
alternatives being considered. The entire search takes d steps. A tie between candidates at
some search step occurs if τ is reached or the data stream is exhausted before U is satisfied.
With probability 1 − δ∗, all decisions made without ties are the same that would be made
with infinite data. If there are no ties in any of the search steps, the model produced is,
with probability 1 − δ∗, the same that would be produced with infinite data (as per the
preceding discussion). L∗ requires at least bd steps, and this best case occurs when each
search decision is easy enough to be made after just ∆n samples. More difficult decisions
will require more samples, up to a maximum of c∆n. In other words, the running time of
the modified algorithm is independent of the size of the data stream, as long as the latter
is greater than f−1(τ, δ∗/[cda(b − a)q], s), and instead depends on the complexity of the
decisions involved in the learning process.

SelectCandidates(M) is an anytime procedure in the sense that, at any point after
processing the first ∆n examples, it is ready to return the best a candidates according
to the data scanned so far (in increments of ∆n). If the learning algorithm is such that
successive search steps progressively refine the model to be returned, L∗ itself is an anytime
procedure.

The method is equally applicable to databases (i.e., samples of fixed size that can be
scanned multiple times) and data streams (i.e., samples that grow without limit and can
only be scanned once). In the database case, we start a new scan whenever we reach the
end of the database, and ensure that no search step uses the same example twice (we call
a tie just before this would happen). In the data stream case, we simply continue scanning
the stream after the winners for a step are chosen, using the new examples to choose the
winners in the next step, and so on until the search terminates. When working with a data
stream (and the rate of data arriving on the data stream is lower than the rate at which
data can be incorporated by the algorithm) it can be advantageous to save old examples in
a cache and reuse them for later decisions.

An alternative use of our method is to first choose a maximum error probability δ to be
used at each step, and then report the global error probability achieved, δ∗ = δ

∑d
i=1 ciai

(bi − ai)qi, where ci is the number of goal checks performed in step i, bi is the number
of candidates considered at that step, ai is the number selected, and qi is the number of
bounds needed for the evaluation function. Even if δ is computed from c, b, a, q and the
desired δ∗ as in Table 2, reporting the actual achieved δ∗ is recommended, since it will often
be much better than the original target.
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Further time can be saved by dropping candidates from consideration as soon as it
becomes clear (with high confidence) that they will not be selected by SelectCandidates.
In particular, a candidate Mc is dropped when ∀Mi ∈ M′ : E(Mc, T

′)+ + f(n, δ∗/[cda(b −
a)q], s) < E(Mi, T

′)−. Dropping a candidate allows the CPU time, RAM, and data accesses
that it was utilizing to be used by other candidates, which allows learning to be carried out
more efficiently.

2.1 Pruning

Our method supports several types of pruning: no-pruning, post-pruning, and pre-pruning.
The simplest version is no-pruning, where the search steps are taken until the maximum
search depth of d is reached. Recall that, since our method only makes refinements that
are supported by high-confidence statistical tests, no-pruning need not lead to overfitting.

An alternate approach is to use post-pruning. In this mode some portion of training
data is withheld from the training process and used to post-prune the model as needed
(using standard techniques). This prune data can be kept in RAM if practical, or stored on
disk, and its size can be limited so that it fits within available resources. Note that in an
online setting post-pruning can be performed on a copy of the model, so that the original
can be further refined while the pruned copy is used for performance tasks.

The final pruning mode supported is pre-pruning. This mode uses a pre-prune parameter
τ ′ and no model is returned by SelectCandidates unless it improves over the current model
by at least this amount. In particular, let M0 be the current model. Our method stops
early and returns M0 if ∀Mi ∈ M′ : E(Mi, T

′)− − E(M0, T
′)+ < f(n, δ∗/[cda(b − a)q], s)

and f(n, δ∗/[cda(b − a)q], s) < τ ′.

2.2 Working Within Memory Constraints

Notice that for many evaluation functions (including accuracy, entropy, Gini, etc.) Select-
Candidates does not need direct access to the training data, but only to sufficient statistics
gathered from the data. In these cases, our method requires only RAM to store candidate
models and their associated sufficient statistics. Each example need only be in RAM for
the time required to update the appropriate sufficient statistics, and it can then be purged.
When learning large, complex models, however, it is often the case that the structure, pa-
rameters, and sufficient statistics used by all the candidates at a given step exceed the avail-
able memory. This can lead to severe slowdowns as memory pages are repeatedly swapped
to and from disk. Our method can be easily adapted to avoid this, as long as m > a, where
m is the maximum number of candidates that fits within the available RAM. We first form
a set M1 composed of any m elements of M, and run SelectCandidates(M1). We then add
another m − a candidates to the a selected, yielding M2, and run SelectCandidates(M2).
We continue in this way until M is exhausted, returning the a candidates selected in the
last iteration as the overall winners. As long as all calls to SelectCandidates() start scan-
ning S at the same example, ties are broken consistently, and data is i.i.d, these winners
are the same that would be obtained by the single call SelectCandidates(M) with high
confidence. If k iterations are carried out, this modification increases the running time of
SelectCandidates(M) by a factor of at most k, with k < b. Notice that the “new” candidates
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in each Mi do not need to be generated until SelectCandidates(Mi) is to be run, and thus
they never need to be swapped to disk.

2.3 Parallel Searches

Many learning algorithms are intrinsically parallel. For example, when performing decision
tree induction, the searches for splits at the leaves are completely independent of each other.
In such cases, a separate copy of our method is created for each independent component of
the model. When new data arrives it is filtered to the searches where it has an effect, added
to the samples there, and SelectCandidates is called for any search that has accumulated
∆n examples since the last call. The procedure used to identify which searches are affected
by training examples will vary between learning algorithms. For instance, when learning
a decision tree each example affects the search for the model at exactly one leaf, and the
partially induced tree can be used to quickly identify which one. Note that the number of
parallel searches may change during the course of a learning run (e.g. whenever new leaves
are added to a decision tree).

There are two main benefits of this parallel decomposition. The first advantage is that
it avoids a great deal of redundant work by allowing decisions that are independent to
be made independently. Consider the alternative, learning a decision tree with a single
monolithic search. Each step of this monolithic search would involve comparing all the
possible splits at all of the leaves of the decision tree, and thus require much more data
to achieve the same confidence. Once a search step was made, all of these alternatives
would need to be reevaluated on a new sample of data for the next search step.3 The
second advantage is that it allows us to deactivate portions of the learning algorithm in a
fine grained manner when CPU or RAM resources become short. In particular, whenever
computing resources are exhausted we order the active parallel searches by an estimate of
the maximum improvement that can be achieved by continuing them. We then temporarily
deactivate those with lowest rankings. For example, in decision tree learning this can be
the error rate at the leaf times the fraction of the data stream that filters to it.

2.4 Time-Changing Concepts

The processes that generate massive data sets and open-ended data streams often span
months or years, during which the data-generating distribution can change significantly,
violating the iid assumption made by most learning algorithms. Our method keeps the
model it is learning in sync with such changing concepts by continuously monitoring the
quality of old search decisions with respect to a sliding window of data from the data stream,
and updating them in a fine-grained way when it detects that the distribution of data is
changing. In particular, we maintain sufficient statistics throughout time for every candidate
M considered at every search step. After the first w examples, where w is the window width,
we subtract the oldest example from these statistics whenever a new one is added. After
every ∆n new examples, we determine again the best a candidates at every previous search
decision point. If one of them is better than an old winner by δ∗ then one of two things has
happened. Either the original decision was incorrect (which will happen a fraction δ of the

3. The VFBN2 algorithm for learning the structure of Bayesian networks from massive data streams (Hulten
and Domingos, 2002) was developed using this insight.
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time) or concept drift has occurred. In either case, we begin an alternate search starting
from the new winners, while continuing to pursue the original search. Periodically we use
a number of new examples as a validation set to compare the performance of the models
produced by the new and old searches. We prune an old search (and replace it with the
new one) when the new model is on average better than the old one, and we prune the new
search if after a maximum number of validations its models have failed to become more
accurate on average than the old ones. If more than a maximum number of new searches is
in progress, we prune the lowest-performing ones. This approach to handling time-changing
data is used to create the CVFDT decision tree induction algorithm, and will be discussed
in more detail in Section 6.

2.5 Active Learning

Active learning is a powerful type of subsampling where the learner actively selects the
examples that would cause the most progress e.g., Cohn et al. (1994). Our method has
a natural extension to this case when examples are relevant to some, but not all, of the
parallel searches. When choosing the next ∆n examples we never select ones that are
only relevant to searches that have been deactivated because of RAM constraints. Further,
where possible, our method can choose the next ∆n examples so that searches where more
progress is possible (according to some heuristic measure) receive more examples.

3. The VFDT System

In this section we apply out method for scaling to a decision tree induction algorithm
(Breiman et al., 1984, Quinlan, 1993) and produce VFDT (Very Fast Decision Tree learner),
an incremental, anytime decision tree induction algorithm that is capable of learning from
massive data streams within strict CPU and RAM constraints. In this section we assume
the examples are generated by a stationary stochastic process (i.e., their distribution does
not change over time).4 In Section 6 we extend the VFDT algorithm to work with time-
changing concepts.

The classification problem is generally defined as follows. A set of N training examples
of the form (x, y) is given, where y is a discrete class label and x is a vector of d attributes,
each of which may be symbolic or numeric. The goal is to produce from these examples a
model y = f(x) that will predict the classes y of future examples x with high accuracy. For
example, x could be a description of a client’s recent purchases, and y the decision to send
that customer a catalog or not; or x could be a record of a cellular-telephone call, and y
the decision whether it is fraudulent or not.

Decision trees address this problem as follows. Each internal node in the tree contains a
test on an attribute, each branch from a node corresponds to a possible outcome of the test,
and each leaf contains a class prediction. The label y = DT (x) for an example x is obtained
by passing the example down from the root to a leaf, testing the appropriate attribute at
each node and following the branch corresponding to the attribute’s value in the example.

4. If the examples are being read from disk, we assume that they are in random order. If this is not the
case, they should be randomized, for example by creating a random index and sorting on it.
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A decision tree is learned by recursively replacing leaves by test nodes, starting at the
root. The attribute to test at a node is chosen by comparing all the available attributes and
choosing the best one according to some heuristic measure. Classic decision tree learners
like ID3, C4.5 and CART assume that all training examples can be stored simultaneously
in main memory, and are thus severely limited in the number of examples they can learn
from. Disk-based decision tree learners like SLIQ (Mehta et al., 1996) and SPRINT (Shafer
et al., 1996) assume the examples are stored on disk, and learn by repeatedly reading them
in sequentially (effectively once per level in the tree). While this greatly increases the size
of usable training sets, it can become prohibitively expensive when learning complex trees
(i.e., trees with many levels), and fails when data sets are too large to fit in the available
disk space or when data is arriving on an open-ended stream.

In this section we use our method to design a decision tree learner for extremely large
(potentially infinite) data sets. We achieve this by noting with Catlett (1991) and others
(Musick et al., 1993, Gehrke et al., 1999) that, in order to find the best attribute to test at a
given node, it may be sufficient to consider only a small subset of the training examples that
are relevant to that node. Given a stream of examples, the first ones will be used to choose
the root test; once the root attribute is chosen, the succeeding examples will be passed
down to the corresponding leaves and used to choose the appropriate attributes there, and
so on recursively. This learner requires that each example be read at most once, and it uses
only a small constant time to process each example. This makes it possible to directly mine
online data sources (i.e., without ever storing the examples), and to build potentially very
complex trees with acceptable computational cost.

3.1 High Confidence Upper and Lower Bounds for Information Gain

In order to use our method, we need high-confidence upper and lower bounds on the eval-
uation function being used. VFDT uses information gain (Quinlan, 1993):

G(A, T ) = H(T ) −
∑

v∈A

P (T,A, v)H(Sel(T,A, v)) (2)

where A is an attribute, T is a set of training examples, P (T,A, v) is the fraction of examples
in T that have value v for attribute A, Sel(T,A, v) selects from T all examples with value
v for attribute A, and H(.) is the entropy function. The first step to bounding information
gain is obtaining a bound for entropy. The entropy of a distribution over classes is

H(T ) = −
∑

c∈Classes

P (c|T ) log P (c|T ) (3)

where P (c|T ) is the probability that an example in T has class label c. In our setting, each
of these probabilities will be estimated from a sample of data and so we need to bound
their values. For this presentation we will use the Hoeffding bound, but we have also used
normal bounds in our implementation. One form of the Hoeffding bound (Hoeffding, 1963)
says that

P̂ (c|T ) −

√

ln(2
δ
)

2n
≤ P (c|T ) ≤ P̂ (c|T ) +

√

ln(2
δ
)

2n
(4)
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where n is the size of the sample. This gives us a high confidence upper and lower bound
for each probability; let these be P +

c1
, . . . , P +

cm
and P−

c1
, . . . , P−

cm
respectively. We achieve an

upper and lower bound on entropy by maximizing and minimizing the p log p of each class
separately and then summing them. Taking the derivative of p log p and setting equal to
zero we find that the maximum occurs at 1/e. Also minima occur at 0 and 1. Also notice
that the function is concave. Therefore, a high-confidence maximum is obtained by taking
for each Pci

the value in the closed interval [P +
ci

, P−
ci

] that is closest to 1/e. Let P max(ci) be
the value that maximizes this for ci. A high-confidence minimum is obtained by taking for
each Pci

whichever of min(P +
ci

, 1) and max(P−
ci

, 0) has a lower value for p log p. Let P min(ci)
be the value that minimizes this for ci. Let the upper and lower bounds on the entropy be
H+ and H− respectively

H(T )+ = −
∑

c∈Classes

Pmax(c|T ) log P max(c|T )

H(T )− = −
∑

c∈Classes

Pmin(c|T ) log P min(c|T ) (5)

We improve on this bound by taking advantage of the constraint that
∑

c∈Classes P (c|T ) = 1.
Using this constraint, we know that the entropy function takes its maximum value when
each of the Pci

’s are 1/m, and that this maximum value is log m (where m is the number
of values of the class attribute). If the upper bound we obtain is higher than this value, we
return log m instead.

We can now use these to bound information gain. Notice that the H(T ) term in Equa-
tion 2 is the same for every attribute. We drop it from further consideration because it will
not affect the comparison between attributes. Thus, the final bounds are

G(A, T )+ =
∑

v∈A

(P (T,A, v) +
√

ln(1/δ)/2N )H(Sel(T,A, v))+

G(A, T )− =
∑

v∈A

(P (T,A, v) −
√

ln(1/δ)/2N )H(Sel(T,A, v))− (6)

and q, the number of statistical bounds that must hold for these to hold (recall that this
is needed by our method to correct δ), is 2v(c + 1): for each value both P (T,A, v) and the
class probability estimates needed in the entropy calculation must be bounded.

3.2 The VFDT Algorithm

We now present VFDT, shown in pseudo-code in Table 3. The counts nijk are the sufficient
statistics needed to compute most heuristic measures, including information gain. The
pseudo-code shown is only for discrete attributes; its extension to numeric ones is described
in Section 3.5. The sequence of examples S may be infinite, in which case the procedure
never terminates, and at any point in time a parallel procedure can use the current tree DT
to make class predictions.

As long as VFDT processes examples faster than they arrive, which will be the case in
all but the most demanding applications, the sole obstacle to learning arbitrarily complex

12



Mining Massive Data Streams

Table 3: The VFDT algorithm.

Inputs:
T = {X1, X2, . . . , X∞} a stream of iid samples,
X a set of discrete attributes,
G(.)+ and G(.)− upper and lower bounds on a split evaluation

function G(.) (see Equation 6),
δ one minus the desired probability of choosing the correct attribute at

any given node,
τ a user specified tie threshold,
f a bound function (we use the Hoeffding bound; see Equation 1).

Output: DT , a decision tree.

Procedure VFDT (T,X, G+, G−, δ, τ, f)
/* Initialize */
Let DT be a tree with a single leaf l1 (the root).
For each class yk

For each value xij of each attribute Xi ∈ X
/* The sufficient statistics needed to calculate G */
Let nijk(l1) = 0.

/* Process the examples */
For each example (x, y) in T

Sort (x, y) into a leaf l using DT .
For each xij in x such that Xi ∈ Xl

Increment nijk(l).
Label l with the majority class among the examples seen so far at l.
If the examples seen so far at l are not all of the same class, then

Compute G
+
l (Xi) and G

−
l (Xi) for each attribute Xi ∈ Xl

using the counts nijk(l).

Let Xa be the attribute with highest G
−
l .

Let Xb be the attribute other than Xa with highest G
+
l .

Compute ε using f(.).

If G
−
l (Xa) − G

+
l (Xb) > ε or ε < τ , then

Replace l by an internal node that splits on Xa.
For each branch of the split

Add a new leaf lm, and let Xm = X− {Xa}.
For each class yk and each value xij of each attribute Xi ∈ Xm

Let nijk(lm) = 0.
Return DT .
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models will be the finite RAM available. VFDT’s memory use is dominated by the memory
required to keep counts for all growing leaves. If d is the number of attributes, v is the
maximum number of values per attribute, and c is the number of classes, VFDT requires
O(dvc) memory to store the necessary counts at each leaf. If l is the number of leaves
in the tree, the total memory required is O(ldvc). This is independent of the number of
examples seen, if the size of the tree depends only on the “true” concept and is independent
of the size of the training set. Notice that, although this is a common assumption in the
analysis of decision tree and related algorithms, it often fails in practice. If VFDT ever
exceeds the RAM available it uses our method’s RAM optimizations (See Section 2.2) and
temporarily deactivates the searches at the least promising leaves to make room for new
ones. In particular, if pl is the probability that an arbitrary example will fall into leaf l, and
el is the observed error rate at that leaf on the training data that reaches it, then plel is an
estimate of the maximum error reduction achievable by refining the leaf. plel for a new leaf
is estimated using the counts at the parent for the corresponding attribute value. The least
promising leaves are considered to be the ones with the lowest values of plel. When a leaf
is deactivated the memory it was using is freed, except for two numbers required to keep
track of plel. A leaf can then be reactivated if it becomes more promising than a currently
active leaf. This is accomplished by scanning through all the active and inactive leaves at
regular intervals, and replacing the least promising active leaves with the inactive ones that
dominate them.

In order to make the best use of all the available memory in the early part of a run
(before RAM is filled by sufficient statistics), VFDT caches training examples in RAM.
This is similar to what batch learners do, and it allows VFDT to reuse training examples
for decisions on several levels of the induced tree. As soon as available memory is exhausted
VFDT disables caching for leaves with the lowest plel values until memory usage is under
threshold. VFDT disables all example caches before it begins deactivating leaves.

The full VFDT system takes advantage of all of the other refinements to our method
described in Section 2, including: stopping early on attributes that are clear losers; treating
the search at each leaf as a parallel search; working on both databases and data streams;
supporting pre-pruning, post-pruning and no-pruning; and active learning (tracking time-
changing concepts will be discussed in more detail when we introduce CVFDT in Section 6).

3.3 Quality Guarantees

As Equation 1 implies, a key property of the VFDT algorithm is that it is possible to
guarantee under realistic assumptions that the trees produced by the core of the algorithm
as presented in Table 3 are asymptotically arbitrarily close to the ones produced by a
batch learner (i.e., a learner that uses all the examples to choose a test at each node). In
other words, the streaming nature of the VFDT algorithm does not significantly affect the
quality of the trees it produces. The bound from our general method (see Equation 1)
applies directly, but in this section we take advantage of the typical structure of decision
trees to develop a stronger bound. We first define the notion of disagreement between two
decision trees. Let P (x) be the probability that the attribute vector (loosely, example) x
will be observed, and let I(.) be the indicator function, which returns 1 if its argument is
true and 0 otherwise.
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Definition 1 The extensional disagreement ∆e between two decision trees DT1 and DT2

is the probability that they will produce different class predictions for an example:

∆e(DT1, DT2) =
∑

x

P (x)I[DT1(x) 6= DT2(x)]

Consider that two internal nodes are different if they contain different tests, two leaves are
different if they contain different class predictions, and an internal node is different from a
leaf. Consider also that two paths through trees are different if they differ in length or in
at least one node.

Definition 2 The intensional disagreement ∆i between two decision trees DT1 and DT2

is the probability that the path of an example through DT1 will differ from its path through
DT2:

∆i(DT1, DT2) =
∑

x

P (x)I[Path1(x) 6= Path2(x)]

where Pathi(x) is the path of example x through tree DTi.

Two decision trees agree intensionally on an example iff they are indistinguishable for that
example: the example is passed down exactly the same sequence of nodes, and receives an
identical class prediction. Intensional disagreement is a stronger notion than extensional
disagreement, in the sense that ∀DT1,DT2

∆i(DT1, DT2) ≥ ∆e(DT1, DT2).

Let pl be the probability that an example that reaches level l in a decision tree falls into a
leaf at that level. To simplify, we will assume that this probability is constant, i.e., ∀ l pl = p,
where p will be termed the leaf probability. This is a realistic assumption, in the sense that
it is typically approximately true for the decision trees that are generated in practice. Let
V FDTδ be the tree produced by the VFDT algorithm with desired probability δ given an
infinite sequence of examples S, and DT∗ be the asymptotic batch decision tree induced by
choosing at each node the attribute with true greatest G (i.e., by using infinite examples
at each node). Let E[∆i(V FDTδ, DT∗)] be the expected value of ∆i(V FDTδ, DT∗), taken
over all possible infinite training sequences. We can then state the following result.

Theorem 1 If V FDTδ is the tree produced by the VFDT algorithm with desired probability
δ given infinite examples (Table 3), DT∗ is the asymptotic batch tree, and p is the leaf
probability, then E[∆i(V FDTδ, DT∗)] ≤ δ/p.

Proof. For brevity, we will refer to intensional disagreement simply as disagreement. Con-
sider an example x that falls into a leaf at level lv in V FDTδ, and into a leaf at level ld
in DT∗. Let l = min{lh, ld}. Let PathV (x) = (NV

1 (x), NV
2 (x), . . . , NV

l (x)) be x’s path
through V FDTδ up to level l, where NV

i (x) is the node that x goes through at level i in
V FDTδ, and similarly for PathD(x), x’s path through DT∗. If l = lh then NV

l (x) is a leaf
with a class prediction, and similarly for N D

l (x) if l = ld. Let Ii represent the proposition
“PathV (x) = PathD(x) up to and including level i,” with I0 = True. Notice that P (lv 6= ld)
is included in P (NH

l (x) 6= ND
l (x)|Il−1), because if the two paths have different lengths

then one tree must have a leaf where the other has an internal node. Then, omitting the
dependency of the nodes on x for brevity,
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P (PathV (x) 6= PathD(x))

= P (NV
1 6= ND

1 ∨ NV
2 6= ND

2 ∨ . . . ∨ NV
l 6= ND

l )

= P (NV
1 6= ND

1 |I0) + P (NV
2 6= ND

2 |I1) + . . . + P (NV
l 6= ND

l |Il−1)

=
l

∑

i=1

P (NV
i 6= ND

i |Ii−1) ≤
l

∑

i=1

δ = δl (7)

Let V FDTδ(S) be the VFDT tree generated from training sequence S. Then E[∆i(DTδ, DT∗)]
is the average over all infinite training sequences S of the probability that an example’s path
through V FDTδ(S) will differ from its path through DT∗:

E[∆i(V FDTδ, DT∗)]

=
∑

S

P (S)
∑

x

P (x) I[PathV (x) 6= PathD(x)]

=
∑

x

P (x) P (PathV (x) 6= PathD(x))

=

∞
∑

i=1

∑

x∈Li

P (x) P (PathV (x) 6= PathD(x)) (8)

where Li is the set of examples that fall into a leaf of DT∗ at level i. According to Equation 7,
the probability that an example’s path through V FDTδ(S) will differ from its path through
DT∗, given that the latter is of length i, is at most δi (since i ≥ l). Thus

E[∆i(V FDTδ, DT∗)] ≤
∞
∑

i=1

∑

x∈Li

P (x)(δi) =
∞
∑

i=1

(δi)
∑

x∈Li

P (x) (9)

The sum
∑

x∈Li
P (x) is the probability that an example x will fall into a leaf of DT∗ at

level i, and is equal to (1 − p)i−1p, where p is the leaf probability. Therefore

E[∆i(V FDTδ, DT∗)]

≤
∞

∑

i=1

(δi)(1 − p)i−1p = δp
∞

∑

i=1

i(1 − p)i−1

= δp

[

∞
∑

i=1

(1 − p)i−1 +

∞
∑

i=2

(1 − p)i−1 + · · · +

∞
∑

i=k

(1 − p)i−1 + · · ·

]

= δp

[

1

p
+

1 − p

p
+ · · · +

(1 − p)k−1

p
+ · · ·

]

= δ
[

1 + (1 − p) + · · · + (1 − p)k−1 + · · ·
]

= δ

∞
∑

i=0

(1 − p)i =
δ

p
(10)

This completes the demonstration of Theorem 1.
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An immediate corollary of Theorem 1 is that the expected extensional disagreement
between V FDTδ and DT∗ is also asymptotically at most δ/p (although in this case the
bound is much looser). Another corollary is that there exists a subtree of the asymptotic
batch tree such that the expected disagreement between it and the tree learned by VFDT
on finite data is at most δ/p. In other words, if δ/p is small then VFDT’s tree learned on
finite data is very similar to a subtree of the asymptotic batch tree. A useful application
of Theorem 1 is that, instead of δ, users can now specify as input to the VFDT algorithm
the maximum expected disagreement they are willing to accept, given enough examples
for the tree to settle. The latter is much more meaningful, and can be intuitively specified
without understanding the workings of the algorithm or the Hoeffding bound. The algorithm
will also need an estimate of p, which can easily be obtained (for example) by running a
conventional decision tree learner on a manageable subset of the data.

3.4 Pruning

VFDT supports all three pruning options of our method no-pruning, pre-pruning, and
post-pruning. When using the no-pruning option VFDT refines the tree it is learning
indefinitely. When using pre-pruning VFDT takes an additional pre-prune parameter, τ ′,
and stops growing any leaf where the difference between the best split candidate all others
is less than f(.) and f(.) < τ ′ (see Section 2.1). If there is ever a point at which all of
the leaves in the tree are pre-pruned, the VFDT procedure terminates and returns the
tree. Finally, when using post-pruning, VFDT reserves some portion of the stream T to
use as pruning data. VFDT takes two post-pruning parameters: the probability that each
example will be reserved for pruning, and the maximum number of pruning examples to
maintain. (Note that pruning data can be kept in RAM if resources are available, or stored
in disk if needed.) Then, when a parallel procedure needs to use the decision tree for
performance tasks, VFDT creates a copy of the tree it is learning, prunes the copy with the
pruning data and a standard pruning algorithm (we use reduced error pruning (?) in our
evaluations), passes the pruned copy to the parallel process, and continues using additional
data to further refine the original tree.

3.5 Numeric Attributes

Decision trees support numeric attributes by allowing internal nodes to contain tests of the
form “(Ai < t)?” – the value of attribute i is less than threshold t. Traditional decision tree
induction algorithms learn trees with such tests in the following manner. For each numeric
attribute, they construct a set of candidate tests by sorting the values of that attribute in
the training set and using a threshold midway between each adjacent pair of values that
come from training examples with different class labels. These candidate tests are evaluated
along with the discrete ones by modifying P (T,A, v) and Sel(T,A, v) from Equation 2 to
count and select examples that pass and fail the threshold test instead of examples with
the target value v.

There are several reasons why this standard method is not appropriate when learning
from data streams. The most serious of these is that it requires that the entire training set
be available ahead of time so that split thresholds can be determined. VFDT uses sampling
and considers only a subset of all possible thresholds as candidate split points. (CLOUDS
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(Alsabti et al., 1998), and BOAT (Gehrke et al., 1999) also use sampling, although these
other systems were designed for fixed-sized data sets and are not appropriate for data
streams.) In particular, whenever VFDT starts a new leaf, it collects up to M distinct
values for each continuous attribute from the first examples that arrive at it. These are
maintained in sorted order as they arrive, and a candidate test threshold is maintained
halfway between adjacent values with different classes, as in the traditional method. Once
VFDT has M values for an attribute, it stops adding new candidate thresholds and uses
additional data only to evaluate the existing ones.

Every leaf uses a different value of M , based on its level in the tree and the amount of
RAM available when it is started. For example, M can be very large when choosing the
split for the root of the tree, but must be very small once there is a large partially-induced
tree, and many leaves are competing for limited memory resources. Notice that even when
M is very large (and especially when it is small) VFDT may miss the locally optimal split
point. This is not a serious problem in our setting for two reasons. First, if data is an iid
sample VFDT should end up with a value near (or an empirical gain close to) the correct one
simply by chance. And second, VFDT will be learning very large trees from massive data
streams and can correct early mistakes later in the learning process by adding additional
splits to the tree. An empirical evaluation of these claims, and of the rest of the VFDT
system, is described in the next two sections.

4. Empirical Evaluation of VFDT on Synthetic Data

A system like VFDT is only useful if it is able to learn more accurate trees than a con-
ventional system, given similar computational resources. In particular, it should be able to
use the examples that are beyond a conventional system’s ability to process to learn better
models. In this section we test this empirically by comparing VFDT with C4.5 release 8
(Quinlan, 1993), the incremental Decision tree learner ITI (Utgoff, 1994), and our imple-
mentation of SPRINT (Shafer et al., 1996) on a series of synthetic data streams5. Using
synthetic data streams allows us to freely vary the relevant parameters of the learning pro-
cess and more fully explore the capabilities of our system. In Section 5 we describe an
evaluation on a real-world data set.

We first describe the data streams used for our experiments. They were created by
randomly generating decision trees and then using these trees to assign classes to randomly
generated examples. We produced the random decision trees as follows. Starting from a
tree with a single leaf node (the root) we repeatedly replaced leaf nodes with nodes that
tested a randomly selected attribute which had not yet been tested on the path from the
root of the tree to that selected leaf. After the first three levels of the tree each selected
leaf had a probability of f of being pre-pruned instead of replaced by a split (and thus
of remaining a leaf in the final tree). Additionally, any branch that reached a depth of
18 was pruned at that depth. Whenever a leaf was pruned we randomly (with uniform
probability) assigned a class label to it. A tree was complete as soon as all of its leaves

5. We also wanted to compare with C5.0, but license issues prevented it from running on the machines we
used for our study. However, we did perform some comparisons between C4.5 and C5.0 on our synthetic
data streams, and found their accuracy results to be practically indistinguishable (although C5.0 did
learn smaller trees).
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were pruned. We then generated a stream of 50 million training examples for each tree by
sampling uniformly from the instance space, assigning classes to the examples according to
the corresponding synthetic tree, and adding class and attribute noise by flipping each with
probability n. We also generated 50,000 separate test examples for each concept using the
same procedure. We used nine parameter settings to generate trees: every combination of f
in {12%, 17%, 23%} (these values were selected so that the average concept tree would have
about 100,000 nodes) and n in {5%, 10%, 15%}. We also used six different random seeds for
each of these settings to produce a total of 54 data streams. Every domain we experimented
with had two classes and 100 binary attributes. We ran our experiments on a cluster of five
Pentium III/1GH machines with 1GB of RAM, all running Linux. We reserved nine of the
data streams, one from each of the parameter settings above, and used them to tune the
algorithms’ parameters.

We now briefly describe the learning algorithms used in our experiments:

• C4.5 (Quinlan, 1986) is a well known and widely used batch decision tree learner
for data sets that fit in RAM. Our hypothesis is that VFDT’s performance is similar
to C4.5’s when the entire data set can fit in RAM, and that VFDT is able to take
advantage of larger data sets to learn more accurate models. We used the reserved
data streams to tune C4.5’s ‘-c’ (prune confidence level) parameter, and found 5% to
achieve the best results.

• ITI (Utgoff, 1994) is an incremental decision tree learner for data sets that fit in
RAM. That is, it examines training examples one at a time, adding them to it its
tree, and updating any splits that changed based on the information contained in the
new example. ITI differs from VFDT in two fundamental ways. First, ITI stores all
training examples in the tree it is learning, while VFDT only stores sufficient statistics
gathered from the examples (although VFDT is able to store examples when extra
RAM is available). Second, ITI maintains the same tree that a batch learner would
have learned on the data ITI has seen at any point during its run. This requires
it to constantly restructure its tree to fix mistakes (decisions that looked good on
the sample it had, but were not correct with respect to the process generating data).
VFDT, on the other hand, only makes decisions that are supported by high-confidence
statistical tests, and thus does not need to spend time restructuring its trees. Our
hypothesis is that VFDT is able to incorporate data much more quickly and thus
scale to much larger data sets. We tuned ITI’s ‘-P’ parameter, which controls the
complexity of the trees ITI learns. This parameter specifies a minimum number of
examples of the second most common class that must be present in every leaf. We
found 50 to give the best results.

• SPRINT (Shafer et al., 1996) is an algorithm designed to learn decision trees from
data sets that can fit on disk, but are too large to load into RAM. It does this by
performing sequential scans over the data on disk, learning one level of a decision tree
for each scan. For example, to learn a tree with 15 levels, SPRINT would read (and
write) all training data from disk 15 times. This sounds expensive, but SPRINT is
considerably faster than conventional learners (such as C4.5 and ITI) when data does
not fit in RAM because it reorders data on disk as needed to maintain locality of
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access (while the conventional learners rely on OS supported virtual memory, which
is not informed about their intentions, and thus is very wasteful with disk accesses).
Our hypothesis is that VFDT’s ability to learn from a data stream without storing
anything to disk allows it to learn from very large data streams much faster than
SPRINT, while producing models of similar quality.

We used our own implementation of SPRINT for these experiments. Our implemen-
tation shares code with our VFDT implementation (memory management, decision
tree ADT, some data access, etc.). Additionally, SPRINT pruned its trees using the
same code as VFDT’s post-prune option, and both algorithms used the same prun-
ing criteria: reserving 5% of training data for pruning. Once pruning was fixed, our
implementation of SPRINT had no remaining tunable parameters.

• VFDT was implemented as described in the previous section. We also tried using
two different bound functions. For the first we used G()+ and G()− as described in
Equation 6. For the second we used G()+ = G()− = G(). We found the models
built using the second bound contained more nodes (on average by a factor of 4)
and achieved better accuracy on testing data. This suggests that the bound from
Equation 6 is very conservative. We used the second bound in all further experiments.

We tried all three forms of pruning supported by our method: no-pruning, pre-pruning
(with a pre-prune threshold of 0.005), and post-pruning (reserving 5% of the data up to
a maximum of 2 million examples for pruning). We used a ∆n (the number examples
to accumulate before checking for a winner) of 1,000 for all experiments. We used the
reserved data streams to tune VFDT’s two remaining parameters: τ and δ. We found
the best setting for post-pruning to be τ = 0.05, δ = 1−7; the best for no-pruning to
be τ = 0.1, δ = 1−9; and the best for pre-pruning to be τ = 0.1, δ = 1−5.

We compared the algorithms’ abilities to learn from very large data streams. The
incremental systems, VFDT and ITI, were allowed to learn from the streams directly. We
ran ITI on the first 100,000 examples in each stream: it was too slow to learn from more.
We ran VFDT on the entire streams and limited its dynamic memory allocations to 600MB
(the rest of the memory on our computers was reserved for the data generating process and
other system processes). For the batch systems, C4.5 and SPRINT, we sampled several
data sets of increasing size from the data streams and ran the learners on each of them in
turn. C4.5 was run on data sets up to 800MB in size, which contained 2 million samples.
We allowed SPRINT to use up to 1.6GB of data, or 4 million samples.

Figures 1 and 2 show the runtime of the algorithms averaged over all 45 of the data
test streams. The runtimes of all the systems seem to increase linearly with additional
data. ITI and SPRINT were the slower of the systems by far; they were approximately
two orders of magnitude slower than C4.5 and VFDT. ITI was slower because of the cost
of incrementally keeping its model up-to-date as every example arrives, and suggests that
this type of incremental maintenance is not viable for massive data streams. SPRINT was
slower because it needed to do a great deal of additional I/O to scan the entire training
set once per level of the tree it learned. VFDT and C4.5 took the same order of time
to process the same number of examples: VFDT was approximately 3 times slower (up
to the point where C4.5 was not able to run on more data because it ran out of RAM).
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Figure 1: Average runtime of the algorithms.
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Figure 2: Average runtime of the algorithms (zoom).
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VFDT used this additional time to track its memory allocations, swap searches into and
out of memory, and manage example caches. Remember, however, that C4.5 needed to be
run once for each test point, while VFDT was able to incrementally incorporate examples,
and produce all test points with a single pass over each of the data streams. Thus VFDT
actually took far less time to run. VFDT-None (with no pruning) was the fastest of the
three VFDT settings. VFDT-post was about 2% slower, with the additional time being
used to perform post-pruning (at each test point a copy of the tree was made and pruned).
VFDT-pre was about 33% slower than the other VFDT settings. That happened because
it learned smaller trees, usually had a larger fraction of its searches in RAM at a time, and
thus spent more time updating sufficient statistics and checking for winning searches. (The
other VFDT settings ignored many more examples that were not relevant to searches they
had in memory when those examples arrived.)

Next, we compared the error rates of the models learned by the systems. Figure 3 shows
the results. The final error rate achieved by each of the three VFDT systems was better
than the final error rate achieved by any of the non-VFDT systems. This demonstrates
that VFDT is able to take advantage of examples past those that could be used by the
other systems to learn better models. It is also interesting to note that one of the VFDT
systems had the best–or nearly the best–average performance after any number of examples:
VFDT-Pre with less than 100,000 examples, VFDT-None from there to approximately 5
million examples, and VFDT-Post from there until the end at 50 million examples. We also
compared the systems on their ability to quickly learn models with low error rate. Figure 4
shows how the error rates of the models learned by the algorithms improved over time,
and thus which is able to most quickly produce high quality results. One of the VFDT
settings had the best error rate after nearly any amount of time (C4.5 was slightly better
at approximately 1000 seconds). This means that, when faced with an open ended data
stream, it is almost always better to let VFDT monitor it than to draw a sample from it
and run one of the other algorithms on it.

Figure 5 shows the average number of nodes in the models learned by each of the algo-
rithms. The number of nodes learned scaled approximately linearly with additional training
examples for all of the systems. C4.5 learned the largest trees of any of the systems by sev-
eral orders of magnitude; and VFDT-Post learned the smallest by an order of magnitude.
Notice that SPRINT learned many more nodes than VFDT-Post even though they used
the same pruning implementation. This occurred because SPRINT’s model contained every
split that had gain on the training data, while the splits in VFDT-Post’s tree were chosen,
with high confidence, by our method. VFDT’s simultaneous advantage with error rate and
concept size is additional evidence that our method for selecting splits is effective.

Figures 6 and 7 show how the algorithms’ performance varied with changes to the
amount of noise added (n) and to the size of the target concepts (f). Each data point
represents the average error rate achieved by the respective algorithm on all the runs with
the indicated n and f . VFDT-Post had the best performance in every setting, followed
closely by VFDT-None. VFDT-Pre’s error rate was slightly higher than SPRINT’s on the
runs with the highest noise level and the runs with the largest concepts. These results
suggest that VFDT’s performance scales gracefully as concept size or noise increases.

We evaluated VFDT’s ability to learn with more stringent RAM limitations by running
VFDT-None on all of the data streams with a memory allocation limit of 150MB. At
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Figure 3: Average test set error rate of the algorithms vs. number of training examples.
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Figure 4: Average test set error rate of the algorithms vs. time.
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Figure 5: Average number of nodes induced by the algorithms.

the beginning of the run, when VFDT is able to keep all data in 150MB of RAM, the
variations produce the same results. After approximately 100,000 training examples, the
variation with 150MB of RAM is forced to begin freeing example caches and moving searches
out of RAM. At this point its performance lags behind the 600MB version. Somewhat
surprisingly, however, the 150MB version is able to catch after processing approximately 5
million examples. We also measured the runtimes of these variations. The 150MB version is
approximately twice as fast as the 600MB one. Looking deeper, we found that the 600MB
variation spent much more time checking to see if it had seen enough data to make a search
step. This makes sense, as the 600MB version had many more searches active at a time
than the 150MB version.

We calculated the rate at which VFDT is able to incorporate training examples to de-
termine how large a data stream it is able to keep up with in real time. VFDT-None was
able to learn from an average of 807 examples per second. Extrapolating from this, we
estimate it is able to learn from approximately 70 million examples per day. Remember
that these experiments were conducted on 1 GH PIII processors–modest hardware by to-
day’s standards. Further, if faced with a faster data stream VFDT can be accelerated by
increasing ∆n, by more aggressively disabling learning at unpromising leaves, etc. With
such settings we have observed sustained processing rates of over 2,000 examples per second
(several hundred million examples per day).

5. Application of VFDT to Web data

We further evaluated VFDT by using it to mine the stream of Web page requests emanating
from the whole University of Washington main campus. The nature of the data is described
in detail in Wolman et al. (1999). In our experiments we used a one-week anonymized trace
of all the external Web accesses made from the university campus in May 1999. There were
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Table 4: Data sets used in the Web experiments.
Data set # Train Exs # Test Exs % Class 0

30 sec 10,850k 1,944k 46.0

1 min 7,921k 1,419k 45.4

5 min 3,880k 696k 52.5

15 min 2,555k 454k 58.1

Table 5: Results of the Web experiments. ‘Match Time’ is the time it took VFDT to match
C4.5’s best accuracy. ‘VFDT Time’ is the time it took VFDT to do six complete
scans of the training set.

Data set C4.5 Error VFDT Error C4.5 Time Match Time VFDT Time

30 sec 37.70 % 36.95 % 60k sec 5k sec 247k sec

1 min 37.30 % 36.67 % 71k sec 6k sec 160k sec

5 min 33.59 % 33.23 % 61k sec 15k sec 72k sec

23,000 active clients during this one-week trace period, and the entire university population
is estimated at 50,000 people (students, faculty and staff). The trace contains 82.8 million
requests, which arrive at a peak rate of 17,400 per minute. The size of the compressed trace
file is about 20 GB. Each request in the log is tagged with an anonymized organization
ID that associates the request with one of the 170 organizations (colleges, departments,
etc.) within the university. One purpose this data can be used for is to improve Web
caching. The key to this is predicting as accurately as possible which hosts and pages will
be requested in the near future, given recent requests. We applied decision tree learning to
this problem in the following manner. We split the campus-wide request log into a series of
equal time slices T0, T1, . . . , Tt, . . .. We used time slices of 30 seconds, 1 minute, 5 minutes,
and 15 minutes for our experiments. Let NT be the number of time slices in a day. For
each organization O1, O2, . . . , Oi, . . . , O170 and each of the 244k hosts appearing in the logs
H1, . . . ,Hj, . . . ,H244k, we maintain a count of how many times the organization accessed
the host in the time slice, Cijt. Then for each time slice and host accessed in that time slice
(Tt,Hj) we generate an example with attributes: C1,jt, . . . , Cijt, . . . C170,jt, t mod NT , and
class 1 if any request is made to Hj in time slice Tt+1 and 0 if not. This can be carried out
in real time using modest resources by keeping statistics on the last and current time slices
Ct−1 and Ct in memory, only keeping counts for hosts that actually appear in a time slice
(we never needed more than 30k counts), and outputting the examples for Ct−1 as soon as
Ct is complete. Testing was carried out on the examples from the last day in each of the
data sets. See Table 4 for more details of the data sets produced using this method.

We ran C4.5 and VFDT on these data sets, on a 1GH machine with 1GB of RAM
running Linux. We tested C4.5 on data sets up to 1.2M examples (roughly 800 MB; the
remaining RAM was reserved for C4.5’s learned tree and system processes). C4.5’s data
sets were created by random sampling from the available training data. Notice that the
1.2M examples C4.5 was able to process is less than a day’s worth for the ‘30 sec’ and ‘1
min’ data sets and less than 50% of the training data in the remaining cases. We allowed
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Figure 8: Time vs. Error Rate on the ‘30 sec’ data set.
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Figure 9: Time vs. Error Rate on the ‘1 min’ data set.

VFDT to do six passes over the training data and thus incorporate each training example
in its tree at six different places and we allowed it to use 400MB of RAM. We tuned the
algorithms’ parameters on the ‘15 min’ data set. C4.5’s best prune confidence was 5%, and
VFDT’s best parameters were: no-pruning, δ = 1−7, τ = .1, and ∆n = 300. VFDT learned
from the numeric attributes as described in Section 3.5 with M = 1000 in all cases. (The
number of distinct values for an attribute was nearly always less than this limit.)
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Figure 10: Time vs. Error Rate on the ‘5 min’ data set.

Table 5 summarizes the results of these experiments. VFDT was able to learn a more
accurate model than C4.5 on every data set. VFDT’s improvement over C4.5 was largest
on the ‘30 sec’ data set and was smallest on the ‘5 min’ data set. Notice that C4.5 was
able to use about 11% of the ‘30 sec’ data set and about 31% of the ‘5 min’ data set.
This supports the notion that VFDT’s performance improvement over a traditional system
will depend on the amount of additional data that it is able to process past the point
where the traditional system runs into a resource limit. (We also expect that VFDT’s
improvement over a traditional system will depend on the complexity of the underlying
concept: simpler concepts can be more successfully modeled with less training data.) VFDT
was also substantially faster than C4.5 in the following sense. We noted the accuracy of
the best model learned by C4.5 and the time it took it to learn it. We then examined
VFDT’s results to determine how long it took it to learn a model with that same accuracy.
We found that VFDT achieved C4.5’s best accuracy an order of magnitude faster on the
‘30 sec’ and ‘1 min’ data sets and 4 times faster on the ‘5 min’ data set. After this point,
VFDT was able to use additional data to improve its models. Looking further, we found
that VFDT was able to learn from any fixed amount of training data an order of magnitude
faster than C4.5 on this domain. Figures 8, 9 and 10 contain a more detailed picture of
VFDT’s simultaneous speed and accuracy advantage; they show the amount of learning
time on a logarithmic scale on the x-axis and the error rate of the model learned in the
indicated amount of time on the y-axis. VFDT has a more accurate model than C4.5 after
nearly any amount of learning time. (the region where C4.5 has an advantage in Figure 8
is only about 1.6% of the entire run). We attribute this to VFDT’s sampling method which
allows it to use just the right amount of data to make each decision, while C4.5 must use
all data for every decision.

In summary, our experiments in this domain demonstrate the utility of a tool like VFDT
in particular and of our method for mining high-speed data streams in general: VFDT
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achieves the same results as the traditional system, in an order of magnitude less time;
VFDT is then able to use additional time and data to learn more accurate models, while
traditional system’s memory requirements keep them from learning on more data; finally
VFDT’s incremental nature allows it to smoothly refine its model as more data arrives,
while batch systems must be rerun from scratch to incorporate the latest data.

6. Time-Changing Concepts

In this section we use the techniques developed in our general scaling framework to extend
VFDT to learn from time-changing data streams. We call this learner CVFDT (Concept-
drifting Very Fast Decision Tree learner). CVFDT is an extension to VFDT which main-
tains VFDT’s speed and accuracy advantages but adds the ability to detect and respond to
changes in the example-generating process. Like other systems with this capability (Wid-
mer and Kubat, 1996, Ganti et al., 2000), CVFDT works by keeping its model consistent
with a sliding window of examples. However, unlike most of these other systems, it does
not need to learn a new model from scratch every time a new example arrives. Instead, it
monitors the quality of its old decisions on the new data and adjusts those that are no longer
correct. In particular, when new data arrives, CVFDT updates the sufficient statistics at
its nodes by incrementing the counts corresponding to the new examples and decrementing
the counts corresponding to the oldest examples in the window (which need to be forgot-
ten). This will statistically have no effect if the underlying concept is stationary. If the
concept is changing, however, some splits that were previous selected will no longer appear
best because other attributes will have higher gain on the new data. When this happens,
CVFDT begins to grow an alternative subtree with the new best attribute at its root. The
old subtree is replaced by the alternate one when the alternate becomes more accurate on
new data.

Table 6 contains a pseudo-code outline of the CVFDT algorithm. CVFDT does some
initializations, and then processes examples from the stream S indefinitely. As each example
(x, y) arrives, it is added to the window6, an old example is forgotten if needed, and (x, y) is
incorporated into the current model. CVFDT periodically scans DT and all alternate trees
looking for internal nodes whose sufficient statistics indicate that some new attribute would
make a better split than the attribute currently used to split at the node. An alternate
subtree is started at each such node.

Table 7 contains pseudo-code for the tree-growing portion of the CVFDT system. It
is similar to the VFDT algorithm, but CVFDT monitors the validity of its old decisions
by maintaining sufficient statistics at every node in DT (instead of only at the leaves like
VFDT). Forgetting an old example is slightly complicated by the fact that DT may have
grown or changed since the example was initially incorporated. To avoid forgetting an
example from a node that has never seen it, nodes are assigned a unique, monotonically
increasing ID as they are created. When an example is added to W , the maximum ID
of the leaves it reaches in DT and all alternate trees is recorded with it. An example’s
effects are forgotten by decrementing the counts in the sufficient statistics of every node the
example reaches in DT whose ID is less than or equal to the stored ID.

6. The window is stored in RAM if resources are available: otherwise it is kept on disk.

29



Hulten, Domingos, and Spencer

Table 6: The CVFDT algorithm.

Inputs: S is a sequence of examples,
X is a set of discrete attributes,
G(.)+ and G(.)−, upper and lower bounds on a split evaluation function G(.)
δ is one minus the desired probability of choosing the correct

attribute at any given node,
τ is a user specified tie threshold,
f , is a bound function (we use the Hoeffding bound, see Equation 1).
w is the size of the window,
ndrift is the number of examples between checks for drift.

Output: DT is a decision tree.

Procedure CVFDT(S,X, G+, G−, δ, τ, f, w, ndrift)
/* Initialize */
Let DT be a tree with a single leaf l1 (the root).
Let ALT (l1) be an initially empty set of alternate trees for l1.
Let W = be the window of examples, initially empty.

For each value xij of each attribute Xi ∈ X
/* The sufficient statistics needed to calculate G */
Let nijk(l1) = 0.

/* Process the examples */
For each example (x, y) in S

Sort (x, y) into a set of leaves L using DT and all
trees in ALT of any node (x, y) passes through.

Let ID be the maximum id of the leaves in L.
Add ((x, y), ID) to the end of W .
If |W | > w

Let ((xw, yw), IDw) be the last element of W
ForgetExample(DT, n, (xw , yw), IDw)
Let W = W − ((xw, yw), IDw)

CVFDTGrow(DT, n,G+, G−, (x, y), δ, τ)
If there have been ndrift examples since the last checking of alternate trees

CheckForDrift(DT, n, δ, τ)
DiscardPoorAlternatives(DT )

Return DT .
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Table 7: The CVFDTGrow procedure.

Inputs: DT Partially induced tree to check for growth,
X is a set of discrete attributes,
n the set of sufficient statistics being maintained for the run,
G(.)+ and G(.)−, upper and lower bounds on a split evaluation function G(.)
(x, y) the training example to add to the tree,
δ is one minus the desired probability of choosing the correct

attribute at any given node,
τ is a user specified tie threshold,
f , a bound function (we use the Hoeffding bound, see Equation 1).

Procedure CVFDTGrow(DT,X, n,G, (x, y), δ, τ, f)
Sort (x, y) into a leaf l using DT .
Let P be the set of nodes traversed in the sort.
For each node lp in P

For each xij in x such that Xi ∈ Xlp

Increment nijy(lp).
For each tree Ta in ALT (lp)

CVFDTGrow(Ta, n,G, (x, y), δ, nmin , τ)
Label l with the majority class among the examples seen so far at l.
If the examples seen so far at l are not all of the same class, then

Compute G
+
l (Xi) and G

−
l for each attribute Xi ∈ Xl

using the counts nijk(l).

Let Xa be the attribute with highest G
−
l .

Let Xb be the attribute other than Xa with highest G
+
l .

Compute ε using f(.).

If G
−
l (Xa) − G

+
l (Xb) > ε or ε < τ , then

Replace l by an internal node that splits on Xa.
For each branch of the split

Add a new leaf lm, and let Xm = X − {Xa}.
Let ALT (lm) = {}.
For each class yk and each value xij of each attribute Xi ∈ Xm

Let nijk(lm) = 0.
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CVFDT determines that a chosen split attribute would no longer be selected when
∆Gl ≤ ε and ε > τ . When it finds such a node, CVFDT knows that it either initially
made a mistake splitting on Xa (which should happen less than δ% of the time), or that
something about the example generating process has changed. In either case, CVFDT will
need to take action to correct DT . Let Tc be the subtree rooted by the node where the
change was detected. CVFDT grows, in parallel, an alternate subtree to Tc as described
in pseudo-code in Table 8. The criteria used to determine when to start alternate trees
is very similar to the one used to choose initial splits, except the tie threshold is tighter
(τ/2 instead of τ) to avoid excessive alternate tree creation. Alternate trees are grown the
same way DT is, via recursive calls to the CVFDT procedures. Periodically, each node with
a non-empty set of alternate subtrees enters a testing mode to determine if it should be
replaced by one of its alternate subtrees. Once in this mode, the testing node ltest collects
the next m training examples that arrive at it and, instead of using them to learn additional
structure, it uses them to compare the accuracy of the subtree it roots with the accuracies
of all of its alternate subtrees. If the most accurate alternate subtree is more accurate than
lt, lt is replaced by the alternate. During the test phase CVFDT also prunes any alternate
subtree that is not making progress (i.e., whose accuracy is not increasing over time). In
particular, for each alternate subtree of lt, lia, CVFDT remembers the smallest accuracy
difference ever achieved between the two, ∆min(lt, l

i
a). CVFDT prunes any alternate whose

current validation phase accuracy difference is not at least ∆min(lt, l
i
a)+1%. Note that this

parameter can be adjusted (even dynamically) so that CVFDT is more aggressive about
pruning unpromising alternate subtrees when RAM is short. In addition, CVFDT supports
a parameter which limits the total number of alternate trees being grown at any one time;
once this number is reached no new alternates are started until some are pruned.

Instead of using alternate trees one might consider this simpler method for adjusting to
change: prune any node where change is detected to a leaf and start growing from there.
However, this policy performs poorly as it forces a single leaf to do the job previously done
by a whole subtree: even if a subtree is outdated, it will often still be better than the best
single leaf. Pruning to a leaf will be particularly bad when the change is at or near the
root of DT , as it will result in drastic short-term reductions in accuracy, not acceptable
when a parallel process is using DT to make critical decisions. Our alternate tree method
avoids such drastic changes and allows CVFDT to adjust to drift in a smooth, fine-grained
manner.

The rate of drift can change during a run, and thus CVFDT has the ability to dy-
namically change w to adapt. For example, it may make sense to shrink w when many of
the nodes in DT become questionable at once, or in response to a rapid change in data
rate, as these events could indicate a sudden concept change. Similarly, it may make sense
to increase w when there are few questionable nodes, because this may indicate that the
concept is stable. CVFDT is able to dynamically adjust the size of its window in response
to user-supplied events. Events are specified in the form of hook functions which monitor
S and DT and set the window size when appropriate. CVFDT changes the window size
simply by updating w and immediately forgetting any examples that no longer fit in W .

We now discuss a few of the properties of the CVFDT system and briefly compare it
with VFDT-Window, a learner that reapplies VFDT to W for every new example. CVFDT
requires memory proportional to O(ndvc) where n is the number of nodes in CVFDT’s
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Table 8: The CheckForDrift procedure.

Inputs: DT Partially induced tree to check for growth,
X is a set of discrete attributes,
n the set of sufficient statistics being maintained for the run,
G(.)+ and G(.)−, upper and lower bounds on a split evaluation function G(.)
δ is one minus the desired probability of choosing the correct

attribute at any given node,
τ is a user specified tie threshold,
f , a bound function (we use the Hoeffding bound, see Equation 1).

Procedure CheckForDrift(DT,X, n,G+, G−, δ, τ, f)
For each node l in DT that is not a leaf

For each tree Talt in ALT (l)
CheckForDrift(Talt , n)

Let Xa be the split attribute at l.

Let Xn be the attribute with the highest G
+
l other than Xa.

Let Xb be the attribute with the highest G
−
l other than Xn.

Let ∆Gl = G
−
l (Xn) − G

+
l (Xb)

If ∆Gl ≥ 0 and no tree in ALT (l) already splits on Xn at its root
Compute ε using f(.).

If (∆Gl > ε) or (ε < τ and ∆Gl ≥ τ/2), then
Let lnew be an internal node that splits on Xn.
Let ALT (l) = ALT (l) + {lnew}
For each branch of the split

Add a new leaf lm to lnew

Let Xm = X− {Xn}.
Let ALT (lm) = {}.

Let Gm(X∅) be the G of predicting the most frequent class at lm.
For each class yk and each value xij of each attribute Xi ∈ Xm − {X∅}

Let nijk(lm) = 0.
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main tree and all alternate trees, d is the number of attributes, v is the maximum number
of values per attribute, and c is the number of classes. The window of examples can be in
RAM, or can be stored on disk. Therefore, like VFDT, CVFDT’s memory requirements are
dominated by the sufficient statistics and are independent of the total number of examples
seen. At any point during a run, CVFDT will have available a model which reflects the
current concept generating W . It is able to keep this model up-to-date in time proportional
to O(lcdvc) per example, where lc is the length of the longest path an example will have to
take through DT and all alternate trees. VFDT-Window requires O(lvdvcw) time to keep
its model up-to-date for every new example, where lv is the maximum depth of DT . VFDT
is a factor of wlv/lc worse than CVFDT; empirically, we observed lc to be smaller than lv in
all of our experiments (because CVFDT has a smaller tree that more accurately represents
the concept). Despite this large time difference, CVFDT’s drift mechanisms allow it to
produce a model of similar accuracy to VFDT. The structure of the models induced by
the two may, however, be significantly different for the following reason. VFDT-Window
uses the information from each training example at one place in the tree it induces: the
leaf where the example falls when it arrives. This means that VFDT-Window uses the
first examples from W to make a decision at its root, the next to make a decision at the
first level of the tree, and so on. After an initial building phase, CVFDT will have a fully
induced tree available. Every new example is passed through this induced tree, and the
information it contains is used to update statistics at every node it passes through. This
difference can be an advantage for CVFDT, as it allows the induction of larger trees with
better probability estimates at the leaves. It can also be a disadvantage and VFDT-Window
may temporarily be more accurate when there is a large concept shift part-way through W .
This is because VFDT-Window’s leaf probabilities will be set by examples near the end of
W while CVFDT’s will reflect all of W . Also notice that, even when the structure of the
induced tree does not change, CVFDT and VFDT-Window can outperform VFDT simply
because their leaf probabilities (and therefore class predictions) are updated faster, without
the “dead weight” of all the examples that fell into leaves before the current window.

6.1 Empirical Study

We conducted a series of experiments comparing CVFDT to VFDT and VFDT-Window.
Our goals were to evaluate CVFDT’s ability to scale up, to evaluate CVFDT’s ability to deal
with varying levels of drift, and to identify and characterize the situations where CVFDT
outperforms the other systems.

Our experiments used synthetic data that was generated from a changing concept based
on a rotating hyperplane. A hyperplane in d-dimensional space is the set of points x that
satisfy

d
∑

i=1

wixi = w0 (11)

where xi is the ith coordinate of x. Examples for which
∑d

i=1 wixi ≥ w0 are labeled

positive, and examples for which
∑d

i=1 wixi < w0 are labeled negative. Hyperplanes are
useful for simulating time-changing concepts because we can change the orientation and
position of the hyperplane in a smooth manner by changing the relative size of the weights.
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In particular, sorting the weights by their magnitudes provides a good indication of which
dimensions contain the most information; in the limit, when all but one of the weights are
zero, the dimension associated with the non-zero weight is the only one that contains any
information about the concept. This allows us to control the relative information content of
the attributes-and thus change the optimal order of tests in a decision tree representing the
hyperplane-simply by changing the relative sizes of the weights. We sought a concept class
that maintained the advantages of hyperplanes, but where the weights could be randomly
modified without potentially causing the decision frontier to move outside the range of the
data. To meet these goals we used a series of alternating class bands separated by parallel
hyperplanes. We started with a reference hyperplane whose weights were initialized to
0.2 except for w0 which was 0.25d. To label an example, we substituted its coordinates
into the left hand side of Equation 11 to obtain a sum s. If |s| ≤ w0/10 the example
was labeled positive, otherwise if |s| ≤ w0/5 the example was labeled negative, and so on.
Examples were generated uniformly in a d-dimensional unit hypercube. They were then
labeled using the concept, and their continuous attributes were uniformly discretized into
five bins. Noise was added by randomly switching the class labels of p% of the examples.
Unless otherwise stated, each experiment used the following settings: five million training
examples; δ = 0.0001; ndrift = 20, 000; ∆n = 300; τ = 0.05; w = 100, 000; CVFDT’s
window on disk; no memory limits; no pre-pruning; a test set of 50,000 examples; and
p = 5%. CVFDT put nodes into alternate tree test mode after 9,000 examples and used
test samples of 1,000 examples for the comparison. All runs were done on a 1GH Pentium
III machine with 512 MB of RAM, running Linux.

The first series of experiments compares the ability of CVFDT and VFDT to deal with
large concept-drifting datasets. Concept drift was added to the data sets in the following
manner. Every 50,000 examples, w1 was modified by adding 0.01dσ to it, and the test set
was relabeled with the updated concept (with p% noise as before). σ was initially set to 1
and was multiplied by −1 at 5% of the drift points and also just before w1 fell below 0 or
rose above 0.25d. Figure 11 compares the accuracy of the algorithms as a function of d, the
dimensionality of the space. The reported values are obtained by testing the accuracy of
the learned models every 10,000 examples throughout the run and averaging these results.
Drift level, reported on the minor axis, is the average percentage of the test set that changes
label at each point the concept changes. CVFDT is substantially more accurate than
VFDT, by approximately 10% on average, and CVFDT’s performance improves slightly
with increasing d (from approximately 13.5% when d = 10 to approximately 10% when
d = 150). Figure 12 compares the average size of the models induced during the run shown
in Figure 11 (the reported values are generated by averaging after every 10,000 examples,
as before). CVFDT’s trees are substantially smaller than VFDT’s, and the advantage is
consistent across all the values of d we tried. This simultaneous accuracy and size advantage
derives from the fact that CVFDT’s tree is built on the 100,000 most relevant examples,
while VFDT’s is built on millions of outdated examples.

We next carried out a more detailed evaluation of CVFDT’s concept drift mechanism.
Figure 13 shows a detailed view of one of the runs from Figures 11 and 12, the one for d = 50.
The minor axis shows the portion of the test set that is labeled negative at each test point
(computed before noise is added to the test set) and is included to illustrate the concept
drift present in the data set. CVFDT is able to quickly respond to drift, while VFDT’s error
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Figure 11: Error rates as a function of the number of attributes.

Figure 12: Tree sizes as a function of the number of attributes.
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Figure 13: Error rates of learners as a function of the number of examples seen.

Figure 14: Error rates as a function of the amount of concept drift.
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Figure 15: CVFDT’s drift characteristics.

Figure 16: Error rates over time of CVFDT, VFDT, and VFDT-Window.
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rate often rises drastically before reacting to the change. Further, VFDT’s error rate seems
to peak at higher and higher values as the run goes on, while CVFDT’s error peaks seem
to have approximately constant height. We believe this happens because VFDT has more
trouble responding to drift when it has induced a larger tree and must replicate corrections
across more outdated structure. CVFDT does not face this problem because it replaces
subtrees when they become outdated. We gathered some detailed statistics about this run.
CVFDT took 4.3 times longer than VFDT (5.7 times longer if including time to do the
disk I/O needed to keep the window on disk). VFDT’s average memory allocation over the
course of the run was 23 MB while CVFDT’s was 16.5 MB. The average number of nodes
in VFDT’s tree was 2696 and the average number in CVFDT’s tree was 677, of which 132
were in alternate trees and the remainder were in the main tree.

Next we examined how CVFDT responds to changing levels of concept drift on five
data sets with d = 50. Drift was added using a parameter d′. Every 75,000 examples,
d′ of the concept hyperplane’s weights were selected at random and updated as before,
wi = wi + 0.01dσi (although σi now has a 25% chance of flipping signs, chosen to prevent
too many weights from drifting in the same pattern). Figure 14 shows the comparison on
these data sets. CVFDT substantially outperformed VFDT at every level of drift. Notice
that VFDT’s error rate approaches 50% for d′ > 2, and that VFDT’s variance from data
point to data point is large. CVFDT’s error rate seems to grow smoothly with increasing
levels of concept change, suggesting that its drift adaptations are robust and effective.

To gain some insight into the way CVFDT starts new alternate subtrees, prunes existing
ones, and replaces portions of DT with alternates. For this purpose, we instrumented a
run of CVFDT on the D = 2 data set from Figure 14 to output a token in response to
each of these events. We aggregated the events in chunks of 100,000 training examples, and
generated data points for all non-zero values. Figure 15 shows the results of this experiment.
(For example, the + near the top left of the figure indicates that 10 new alternate trees were
started in preceding 100,000 examples.) During the run 264 alternate trees were started; 109
alternate subtrees were swapped into the main tree; and 128 alternate trees were pruned.
Notice that most of the activity seems to occur when the examples in the test set are
changing labels quickly.

To see how well CVFDT would compare to a system using traditional drift-tracking
methods. We thus compared CVFDT, VFDT, and VFDT-Window. We approximated
VFDT-Window by running VFDT on W for every 100,000 examples instead of for every
example. The data set for the experiment had d = 50 and used the same drift settings used
to generate Figure 14 with D = 1. Figure 16 shows the results. CVFDT’s error rate was
the same as VFDT-Window’s, except for a brief period during the middle of the run when
class labels were changing most rapidly. CVFDT’s average error rate for the run was 16.3%,
VFDT’s was 19.4%, and VFDT-Window’s was 15.3%. The difference in runtimes was very
large. VFDT took about 10 minutes, CVFDT took about 46 minutes, and we estimate
that VFDT-Window would have taken 548 days to do its complete run if applied to every
new example. Put another way, VFDT-Window provides a 4% accuracy gain compared to
VFDT, at a cost of increasing the running time by a factor of 17,000. CVFDT provides
75% of VFDT-Window’s accuracy gain, and introduces a time penalty of less than 0.1% of
VFDT-Window’s.
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CVFDT’s alternate trees and additional sufficient statistics do not use too much RAM.
For example, none of CVFDT’s d = 50 runs ever grew to more than 70MB. We never
observed CVFDT to use more RAM than VFDT; in fact it often used as little as half the
RAM of VFDT. The systems’ RAM requirements are dominated by the sufficient statistics
which are kept at the leaves in VFDT, and at every node in CVFDT. We observed that
VFDT often had twice as many leaves as there were nodes in CVFDT’s tree and all alternate
trees combined. This is what we expected: VFDT considers many more examples and is
forced to grow larger trees to make up for the fact that its early decisions become incorrect
due to concept drift. CVFDT’s alternate tree pruning mechanism seems to be effective at
trading memory for smooth transitions between concepts. Further, there is room for more
aggressive pruning if CVFDT exhausts available RAM. Exploring this tradeoff is an area
for future work.

7. Related Work

In this paper we explored the use of our method to learning decision trees from high-
speed time-changing data streams. In previous work we used it (or an earlier version of it)
to learning the structure of Bayesian networks (Hulten and Domingos, 2002), to k-mean
clustering (Domingos and Hulten, 2001), to EM for mixtures of Gaussians (Domingos and
Hulten, 2002), and to learning from very large relational databases (Hulten et al., 2003).

7.1 Scaling Up Learning Algorithms

There has been a great deal of work on scaling up learning algorithms to very large data
sets. Perhaps the most relevant falls into the general category of sequential analysis (Wald,
1947). Examples of relevant machine learning frameworks that use these ideas include PALO
(Greiner, 1996), Hoeffding races (Maron and Moore, 1994), the sequential induction model
(Gratch, 1996), AdaSelect (Domingo et al., 2002), and the sequential sampling algorithm
(Scheffer and Wrobel, 2001). The core idea in these is that training samples should be
accumulated (roughly) one at a time until some quality criteria is met, and no longer.
For example, PALO uses sampling to accelerate any hill-climbing search when the utility
of each but must be estimated by sampling (because it can not be calculated directly).
From an initial search state, PALO samples the quality of all adjacent states until one
appears better than the rest with high confidence, moves to this winner state, and repeats.
PALO assures that the final state of such a search will be a local optimum with a δ quality
guarantee similar to ours, and achieves a global quality bound by using a stricter δ for
each successive decisions (while we estimate the total number of decisions needed for the
entire learning run and use the same δ for each). Our work extends the ideas in PALO
(and these other sequential analysis systems) in the following three fundamental ways.
First, we address a series of complications that occur when trying to apply these types of
frameworks to real machine learning algorithms, including: working within limited RAM;
using parallel searches; working with search types other than hill-climbing; early stopping on
poor candidates; etc. Second, our framework explicitly addresses time-changing concepts,
while none of the others do. Third, we have evaluated our work by applying it to more
learning algorithms, and by conducting empirical studies on synthetic and real-world data
sets orders of magnitude larger than any of these.
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“Probably close enough” learning (John and Langley, 1996) can be viewed as a prede-
cessor of our work. They consider a finite-size database (as opposed to an infinite one) as
the reference for loss, and their approach is based on fitting a learning curve, offering no
guarantees that the criterion will be satisfied. Learning curve methods (Meek et al., 2002,
Provost et al., 1999) produce models on successively larger sub-samples of the training set
until model quality appears to asymptote. Progressive sampling approaches attempt to it-
eratively determine the best number of examples to use, often via extrapolation of learning
curves. However, they are hindered by the fact that real learning curves do not fit power
laws and other simple forms well enough for reliable extrapolation (Provost et al., 1999).
Our method provides guarantees that the necessary number of examples to satisfy a loss
criterion has been reached.

Our method bears an interesting relationship to recent work in computational learning
theory that uses algorithm-specific and run-time information to obtain better loss bounds
(e.g., Freund (1998), Shawe-Taylor et al. (1996)). A first key difference is that we attempt
to bound a learner’s loss relative to the same learner running on infinite data, instead of
relative to the best possible model (or the best possible from a given class). A second key
difference is that we make more extensive use of run-time information in our bounds. These
two changes make realistic bounds for widely-used learners (e.g., decision tree induction,
K-means clustering) possible for the first time.

Another category of related work attempts to scale up algorithms by improving the
way they access data on disk. For example, the SPRINT (Mehta et al., 1996) and SLIQ
(Shafer et al., 1996) decision tree induction algorithms fall into this category. Rainforest
(Gehrke et al., 2000), is a framework which uses these ideas, and others, and generalizes
them to help construct decision tree induction algorithms for large data sets. Agrawal
et al. (1993) presents another general discussion of how to develop mining algorithms with
efficient data access. Their work casts several common mining algorithm (including decision
tree induction and rule set learning) as search and uses a parallel decomposition (similar to
ours) to learn independent parts of the models with a single scan over data. These systems
have two major shortcomings which prevent them from mining high-speed data streams:
they do not model time-changing concepts, and they require access to all training data
before they do any mining – our framework overcomes both of these shortcomings.

Another important method for improving data access is AD-trees (Komarek and Moore,
2000). AD-trees are a summary structure which contain all the counts that could possibly
be needed by a learning algorithm from a data set. AD-trees will often be much smaller
than the original data set, and can thus greatly reduce the number disk accesses needed
by a learning algorithm. Exploring ways of combining the advantages of AD-trees with our
method is an interesting area for future work.

Incremental learning methods (also known as online, successive or sequential methods)
fulfill many of the same desiderata as our framework. An incremental algorithm is one that
can incorporate new training data into an existing model at any point. However, as we
saw in our evaluation of ITI (Utgoff, 1994) in Section 4 many of the available algorithms
of this type have significant shortcomings when learning from very large data sets. Some
are reasonably efficient, but do not guarantee that the model learned will be similar to the
one obtained by learning on the same data in batch mode. Some are highly sensitive to
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example ordering, potentially never recovering from an unfavorable set of early examples.
Others produce the same model as the batch version, but at a high cost in efficiency.

One of the most relevant scalable learners is BOAT (Gehrke et al., 1999), an incremental
decision tree induction algorithm that uses sampling to learn several levels of a decision
tree in a single pass over training data. BOAT learns a decision tree as follows. It uses
conventional methods to build a number of trees on samples of the database that fit in RAM.
Any structure that all of these sample trees agree on is added to BOAT’s main tree. And
then BOAT is recursively called for each leaf of this tree. Periodically BOAT does a complete
scan of the training database to verify that all of the structure in its final tree is the same
that would have been added by a conventional algorithm learning from the entire data set.
Any structure that is not validated is removed and regrown. BOAT works incrementally as
follows. When new data is added to the database BOAT immediately performs a validation
scan, removes portions of the tree that were changed by the new data, and relearns them.
When the new data is drawn from the same distribution as the old one (that is, when
the underlying concept is stable), BOAT can perform this maintenance extremely quickly.
When drift is present, BOAT must discard and regrow portions of its induced tree, which
can be very expensive when the drift is large or affects nodes near the root of the tree.
CVFDT avoids the problem by using alternate trees and by relaxing the requirement that
it learn exactly the tree that a batch system would. A comparison between BOAT and
CVFDT is an area for future work.

7.2 Learning from Drifting Concepts

The STAGGER system (Schlimmer and Granger, 1986) was one of the first to explicitly
address the problem of concept drift. Salganicoff (1993) studied drift in the context of
nearest-neighbor learning. The FLORA system (Widmer and Kubat, 1996) used a window
of examples, but also stored old concept descriptions and reactivated them if they seemed to
be appropriate again. All of these systems were only applied to small databases (by today’s
standards). Kelly et al. (1999) addressed the issue of drifting parameters in probability
distributions. Theoretical work on concept drift includes Long (1999) and Bartlett et al.
(2000).

Several pieces of research on concept drift and context-sensitive learning are collected in
a special issue of the journal Machine Learning (Widmer and , eds.). Other relevant research
appeared in the ICML-96 Workshop on Learning in Context-Sensitive Domains (Kubat and
Widmer, 1996) and the AAAI-98 Workshop on AI Approaches to Time-Series Problems
(Danyluk et al., 1998). Turney (1998) maintains an online bibliography on context-sensitive
learning.

Aspects of the concept drift problem are also addressed in the areas of activity mon-
itoring (Fawcett and Provost, 1999), active data mining (Agrawal and Psaila, 1995) and
deviation detection (Chakrabarti et al., 1998). The main goal here is to explicitly detect
changes, rather than simply maintain an up-to-date concept, but techniques for the latter
can obviously help in the former.

Perhaps the system most closely related to our approach is the combination of the
DEMON framework (Ganti et al., 2000) and the incremental BOAT decision tree induction
algorithm. DEMON was designed to help adapt any incremental learning algorithms to work
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effectively with time-changing data streams. DEMON assumes data arrives periodically,
perhaps daily, in large blocks. Roughly, DEMON builds a model on every interesting suffix
of the data blocks that are in the current window. For example, if the window contains
n data blocks B1, ..., Bn, DEMON will have a model for blocks B1, ..., Bn; a model for
blocks B2, ..., Bn; a model for B3, ..., Bn; etc. When a new block of data (block Bn+1)
arrives, DEMON incrementally refines the model for B2, ..., Bn to quickly produce the n
block model for the new window. It then uses offline processing time to add Bn+1 to all of
the other models it is maintaining. Wang et al. (2003) develop a similar system for modeling
drifting concepts by learning a model on each chunk of data as it arrives, and also learning
a weight for each of its previously learned modes based on how they perform on the new
data. Then, to classify a new example, they use a weighted average of all previous models.
The simplicity of these systems is an advantage: they can easily be applied to existing
learning algorithm. The disadvantages of these systems are the granularity at which they
track concept-drift (in periodic blocks compared to every example for CVFDT) and the
overhead required to store (and update) all of the required models.

8. Future Work

Building a scaled-up system using the techniques developed in this paper requires some
significant programming. A more desirable solution would allow a user to describe the
learning procedure in a high-level programming language, and let a tool automatically
generate a scaled up learning program from this description. To our knowledge no such
system exists for generically scaling up learning algorithms. There are, however, several
such systems for learning the parameters of probabilistic models. These include BUGS
(Thomas et al., 1992), The Bayes Net Toolbox (Murphy, 2001), and AutoBayes (Fischer
and Schumann, 2002). In order to develop similar solutions for our domain we require:
an expressive language for specifying model structure; a structural search control language
capable of expressing parallelism, simple communication among parallel searches, and easily
changing search strategies (i.e. hill climbing, look ahead, etc.); and a catalog of model
evaluation functions with associated high confidence bounds.

Continuous search spaces are another area for future work. We have begun to explore
these with our work on VFKM (Domingos and Hulten, 2001) and VFEM (Domingos and
Hulten, 2002) clustering algorithms, but more work and closer integration with structural
search is needed. The most critical items here are to develop tighter bounds for continu-
ous spaces, to experiment with heuristics based on our existing bounds, and to come up
with conceptually simple ways to simultaneously perform structural learning and parame-
ter learning from data stream (i.e. how should time and data be divided between the two
tasks, can the combined system maintain the desirable properties of our structural search
framework, etc.).

Previously, our approach has been to take existing learning algorithms and scale them up
using the techniques developed in our method. It seems likely, however, that the algorithms,
models, and heuristics that work well for small data sets will not be the best match to the
requirements found with very large data sets or data streams. Thus, another interesting
area for future work is to use the scaling techniques developed in this paper (as well as those
developed by many other researchers) to design new learning algorithms for new situations.
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We made some small steps in this direction with the VFBN2 system (Hulten and Domingos,
2002) which proposes a new search method for learning the structure of Bayesian networks
and with the VFREL system (Hulten et al., 2003) for learning from massive relational
databases, but we believe there is a great deal more work to be done.

9. Conclusion

In this paper we developed a general method for semi-automatically scaling up a wide
class of learning algorithms to learn from massive time-changing data streams. The core
of our method uses sampling in a fine-grained manner to decide exactly how much data
to use for each decision that needs to be made during the course of the learning run.
Our method also contains many extensions that allow it to meet the requirements present
in the real world such as working within limited RAM, adapting to time-changing data,
and producing high-quality results very quickly. We evaluated our method by using it to
implement the VFDT system for learning decision trees from high-speed data streams and
extending it to develop the CVFDT system for keeping trees up-to-date with time-changing
data streams. We evaluated these systems with extensive studies on synthetic data sets,
and with an application to a massive real-world data stream. We found that the systems
we implemented using our method were able to outperform traditional systems by running
faster and by taking advantage of additional data to learn higher quality models. Finally,
we have released the tools we developed so that others may apply them in their own settings
(see Hulten and Domingos (2004)).
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