
 1

FIT 100 Assignment 3

Algorithms: Writing the perfect instructions1

Introduction

Before we proceed to programming computers, we need to prepare ourselves by
learning how to think about programming. At the heart of programming is the
algorithm, basically a very carefully expressed problem-solving strategy,
usually in the form of a structured set of instructions. We say we “use” or “apply” an
algorithm to solve the problem it was designed for. In everyday life, when we think
of instructions, we mean instructions for other people to follow, rather than a
machine, and we can conveniently make many unstated assumptions and get away
with being ambiguous. Unlike instructions for people, instructions for computers can
leave no room for misinterpretation, so algorithms require an extreme level of
precision that will take some getting used to. Following the guidelines discussed in
Chapter 10, in this assignment, we will exercise our algorithmic thinking on a wide
variety of problems, ranging from everyday tasks to mathematical problems.

• concepts

1. algorithm
2. input, output
3. degree of precision required in an algorithm
4. control flow
5. conditional
6. iteration

• skills

1. writing an algorithm, given a properly specified problem statement
2. identifying examples of conditionals and iteration in algorithms

Reading

• Chapter 10: Algorithmic Thinking

Required Resources

No computers are required. This assignment consists entirely of written exercises.

Vocabulary

All key vocabulary terms used in this assignment are listed below, with closely
related words listed together:

1 Algorithms exercise written by Ken Yasuhara. Edited by Grace Beauchane Whiteaker

 Assignment 3: Algorithms

 2

algorithm, program
control flow
conditional, condition
iteration, looping, loop condition

Discussion and Procedure

You will be writing algorithms for one kind of problem in this assignment. However,
there are more points possible for tackling an algorithm listed in Part 2 or 3. No
matter which problem you choose for writing an algorithm, remember to answer the
2 questions at the end of the assignment as well.

In Part 1 there are algorithm for completing an everyday task like doing laundry or
making a sandwich. In Part 2, there are options to write algorithms for special
everyday tasks carefully chosen to have strong similarities to mathematical or
computing problems. For example, locating a word’s definition in a dictionary is an
example of a “search problem,” using computer science terminology. (Chapter 10’s
CD rack sorting example also falls into this category.) Finally, in Part 3 there are
problems that are explicitly mathematical or computational in nature (e.g., finding
the average of a large set of numbers). You are instructed to choose one problem
from one of these three groups and write an algorithm. For whatever single
algorithm you write, make sure to follow the following instructions:

Instructions for Writing Algorithms

For each problem stated, write a carefully worded and structured set of instructions
for solving the problem. Just as in the example algorithm in Chapter 10 (for sorting
a CD rack), include the following sections, described in detail:

• inputs or start state, including a list of required materials, if applicable (This
might seem obvious for physical tasks like preparing a sandwich. However,
even for mathematical problems, you might want to note which quantities you
want to keep track of.)

• outputs or end result(s)
• numbered steps

Always keep conscious of the assumptions you are making by writing them down
explicitly. You should adhere to the guidelines discussed in Chapter 10 and follow
the format shown in the sample solution below. (See the CD rack sorting example in
Chapter 10 for a more extended example.)

Remember, there is no one right answer. Many different algorithms might be
acceptable for each problem. Due to the flexibility of the English language, the same
algorithm can often be expressed in more than one way. In addition, there is almost
always more than one way to solve a problem. They might differ in their complexity,
time required, and other aspects, which are important differences to consider, but
they can all be valid algorithms for the problem.

Finally, both as you write and after you are finished, check your algorithm to make
sure it satisfies all of the properties discussed at the beginning of Chapter 10. We
have summarized them here in the form of questions you can ask yourself to check
your algorithm:

 Assignment 3: Algorithms

 3

1. Inputs specified. Do you precisely describe all of the data (or
materials) needed for the algorithm?

2. Outputs specified. Do you precisely describe the results of your
algorithm? Your outputs description should clearly state what the
algorithm is supposed to do and solve the problem the algorithm is
designed for.

3. Definiteness. As discussed earlier, an algorithm must be expressed
very precisely. An ambiguous algorithm, if misinterpreted, might be
ineffective at solving the problem it was designed for. It is easy to get
carried away, however, and include details that are not essential to the
algorithm’s correctness. Ask yourself the following as you write: Is this
detail essential to the algorithm’s correctness? Does it add important
information that is not evident from what you have already written?
Include the detail if you answer, “yes,” to these questions.

4. Effectiveness. Are the required resources (whether they be information
or the ability to do certain things) realistic and reasonable? For instance,
an algorithm for converting a temperature from degrees Fahrenheit to
Celsius that relies on looking up the temperature in a Fahrenheit-Celsius
conversion table is hardly interesting or useful.

5. Finiteness. Are you sure that the algorithm actually finishes? For
instance, one algorithm for finding a specific playing card in a deck is to
repeat the following: Shuffle the deck and check the top card. Strictly
speaking, the card you are looking for might never end up at the top of
the deck, no matter how many times you reshuffle. (That would be
pretty rotten luck, but it is possible.) In contrast, checking the whole
deck, one card at a time, while time-consuming, is an algorithm that is
guaranteed to finish. At worst, your card would end up being the last one
you check.

Before we begin, we will go through a simple example. Notice that each problem
statement in this assignment is very carefully stated, with as many details and as
few implicit assumptions as possible. This is no accident. It is only reasonable that
a detailed and precise algorithm requires an equally carefully stated problem.

EXAMPLE PROBLEM: Given a VCR, TV, and videotape of twelve episodes of your favorite
television show, each 30 minutes long, find a specified episode and cue the tape to
the start of the episode. For instance, suppose you have already seen all but one of
the episodes, but you are not sure where the one episode is on the tape. Your
objective is to find this episode on the tape. Assume that the TV and VCR are both
on, and that the tape is in the VCR, cued to an unknown location (i.e., not
necessarily rewound).

EXAMPLE ALGORITHM.

START STATE: videotape of twelve 30 min. episodes, VCR, TV with assumptions
as stated in problem above; ability to recognize one specific episode

END RESULT: videotape cued to beginning of specified episode

 Assignment 3: Algorithms

 4

ASSUMPTIONS:

o VCR has tape counter that shows tape position in hours and minutes.

o Episodes begin at 30 min. multiples, i.e., the first episode is at time 0:00,
the second at 0:30, the third at 1:00, etc. There is no other video
recorded on the tape between episodes.

PROCEDURE:

1) Rewind tape to start.

2) Reset tape counter.

3) Play tape for a few minutes to check whether the episode is the one you
are looking for. If so, proceed to Step 5; otherwise, proceed to Step 4.

4) Stop play, and fast forward the tape. Watch the counter for the next 30
min. multiple, and press stop when the tape reaches that point, which
should be the start of the next episode on the tape. For example, if you
stopped the tape at 2:04 (two hours, four minutes), fast forward until the
counter reads 2:30. Go to Step 3.

5) Stop play, and rewind to the previous 30 min. multiple using the tape
counter. For example, if you recognize the episode you are looking for
and the counter reads 3:32 (three hours, 32 minutes), rewind to 3:30.

Part 1. Algorithms for Everyday Problems [worth 8 points- the assignment
minimum]

IMPORTANT ADVICE: Do not assume that problems in this part will be easy just
because the procedures for these tasks might be second nature to you. In
fact, the more familiar you are with a task, the more likely it is that you will make
implicit assumptions and skip details in your algorithm.

Choose ONE of the problems below and write an algorithm to solve it. Assume a
reasonably equipped kitchen as the context.

1a-1. Prepare a bowl of cold cereal. You may choose to include fruit or other
ingredients beyond cereal and milk, but make sure to state them
explicitly. Assume that a carton of milk is in the refrigerator.

1a-2. Prepare a sandwich. Make sure to state what kind of sandwich you are
making and what ingredients and utensils are required. Again, assume
all required ingredients are in the kitchen, refrigerated if needed.

1a-3. Prepare a cup of tea using a tea bag. You may describe adding cream,
sugar, lemon, honey, etc., but mention these ingredients in your write-
up.

Each of the following everyday problems involves repeating some steps in the
procedure (just as Step 4 in the above example can be repeated).

 Assignment 3: Algorithms

 5

1b-1. Given a pile of pens, find and discard the ones that do not write any
more.

1b-2. Suppose you are told that your favorite movie is on television right now,
but you are not sure which channel it is on. Without the use of a
program guide (that is, without using things like TV Guide or the
newspaper program listings), find the channel broadcasting the movie.
Assume, of course, that you could recognize any part of the movie if you
saw it.

1b-3. Brush your teeth.

1b-4. Wash and dry a load of laundry using coin operated washing machine and
dryer.

Part 2. Algorithms for Computational Everyday Problems [worth up to 12
points]

The problems in this section are real-life versions of computational problems.

2-1. Given two words, determine which would come first in alphabetical order.
Do not use a dictionary or other reference book.

2-2. Given a bag full of cherries, determine whether you could split them

evenly among seven people (so that each person has the same number
of cherries and none are left over). The result is a yes or no answer.

2-3. Given a restaurant check subtotal (before tax) and total (after tax),
calculate how much you should leave for a 15% tip.

2-4. Given fifty apples and a two-pan balance (which can determine whether
two items have the same weight), determine which two (if any) have the
same weight (have weight close enough that the balance measures them
as being equal).

Part 3. Algorithms for Computational Problems [worth up to 15 points]

Problems in this section are obviously computational, involving computing
mathematically interesting results. They are fundamentally different from the
problems in the previous two parts of the assignment in that they involve no physical
process. That is, these problems involve manipulating numbers rather than physical
objects like foods, pens, or laundry detergent.

3-1. Given a set of 20 numbers, compute the average of the numbers.

3-2. Given a set of 100 numbers, find the largest and smallest numbers in the
set.

Part 4. Recognizing Control Flow Patterns

Some algorithms are very simple, and applying them just involves proceeding from
one step to the next (sequential execution). We have already seen examples of

 Assignment 3: Algorithms

 6

algorithms, however, which involve skipping ahead to a later step or repeating an
earlier step, depending on certain conditions. Control flow is the programming term
used to describe the order in which the steps are executed, and we will discuss two
common ways control flow diverges from simple, sequential execution. In the Post-
Assignment Questions, you are asked to examine the algorithms you wrote and
identify at least one example of each of these control flow patterns.

Conditionals: The keyword is “if.” A conditional (also known as a branch) is
when control flow reaches a point where it can proceed to one of two (or more)
alternatives. The condition is what determines which step to proceed to. For
example, to round off a number to its nearest integer, you first need to check the
following condition: whether the fractional part is less than 0.5. If so, the result is
just the integer part; otherwise, you add one to the integer part. Use of the phrase
structure “if…then…” and instructions to skip ahead/back to other steps in an
algorithm are hallmarks of the conditional.

Iteration: Controlled repetition. Iteration is basically the repetition of one or
more steps in an algorithm. Iteration is related to the conditional in that the number
of times you do the repetition is usually controlled by a condition. Iteration is also
called looping and the condition is accordingly called the loop condition. The video
searching example algorithm at the start of this assignment has a loop in Steps 3-4,
where the conditional in Step 3 (checking whether the episode is the one you are
looking for) determines whether you repeat Step 4’s fast-forwarding.

Understanding the concepts of control flow and the two standard patterns of the
conditional and iteration will help you a great deal as you proceed to expressing
algorithms in a programming language.

Post-Assignment Questions

Write your answers after completing the main part of the assignment:

1. Identify one example of iteration in the algorithm you wrote for this
assignment. Explain which steps are being repeated and what determines
when the repetition stops. It is possible that you did not use iteration for
your algorithm: if that is the case, then say so-but be VERY SURE that it is
the case!

2. Identify at least one example of a conditional in the algorithm you wrote for
this assignment. It is possible that you did not use iteration for your
algorithm: if that is the case, then say so-but be VERY SURE that it is the
case!

