
© Copyright 2000-2001, University of Washington

Algorithmic Thinking

What steps does a computer go through to
solve a problem? To be effective computer
users, we need to learn the steps involved.

Thinking algorithmically is the first one.

© Copyright 2002-2003, University of Washington

Unambiguous Instructions
An algorithm is a systematic method for
deterministically producing a specified result. In other
words, step-by-step instructions that, if followed, get
you the same result every time.

There are two main parts to an algorithm – giving the
instructions and following the instructions

Giving the instructions (specifying the algorithm) – in this
class, from now on, that will be the programmer
Following the instructions (executing the algorithm) without the
help or intervention of the programmer – once again, from this
point on we will consider the computer to be doing this

Assume that the agent giving the instructions will not be
the agent who follows them

© Copyright 2002-2003, University of Washington

You’re Already Familiar With Algorithms

Recipes
Recipes are examples of algorithms written by chefs
(programmers) and followed by cooks (computers) to
produce a specified food (deterministic result)

Driving Directions
Written by agents (people) and followed by drivers to get to a
specific destination

S’mores: Place a toasted marshmallow on a
Graham cracker and then place a square of
chocolate on top

© Copyright 2002-2003, University of Washington

The 5 Properties of Algorithms
All algorithms must have certain properties if a
computer is to execute them successfully without
intervention by the programmer

Input Specification

Output Specification

Definiteness

Effectiveness

Finiteness

© Copyright 2002-2003, University of Washington

Input Specification
The input is the data that will be transformed by the
algorithm to create the output

The input must exist in a format the computer can
access and manipulate

When giving an algorithm, one needs to state:
The types of data expected: whole numbers, letter strings
The number of data items expected (the amount so that the
computer will know when it has reached the end of the data)
The structure, if any, of the data expected – a list, a table,
etc.

© Copyright 2002-2003, University of Washington

Output Specification

The output is the result of the computation – the
description of the result often forms the name of the
algorithm

The output must be specified in a format that the
computer can express (such as on screen, or with
audio)

The features specified are the same as for the input:
The types of data forming the result
The number of data items forming the result
The structure of the result

© Copyright 2002-2003, University of Washington

Definiteness
An algorithm must be explicit about how to work the
computation

Definiteness comes by giving commands that state
unambiguously what to do, in sequence

The commands may be …
Conditional, which requires that a decision to be made.
This requires explicit directions on how to respond to all
different outcomes
Repeated (Loops), which requires explicitness about
when to stop the repetition

The definiteness property assures that the agent executing the
instructions will ALWAYS know what command to perform next © Copyright 2002-2003, University of Washington

Effectiveness
Effectiveness assures that the agent following the
instructions (the computer) is able to do so without
intervention

No additional inputs, special talent, creativity, clairvoyance or
help from Superman or other beings

Effectiveness is achieved by reducing the task to the
primitive operations known to the computer

Definiteness assures that the computer ALWAYS
know what command to perform next

Effectiveness assures the computer CAN accomplish
the command

© Copyright 2002-2003, University of Washington

Finiteness
An algorithm must eventually end / terminate with
either

The “right” output
An indication that no solution is possible

An algorithm that never terminates is useless since it
is impossible to know the difference between
continued progress and “stuck”

Finiteness is relevant to computer algorithms since
they typically repeat instructions

3.3
3)10.000000000 …

9
10
9
1 © Copyright 2002-2003, University of Washington

How Precise (Definite, Effective and
Finite) Can You Be?

Write an algorithm to sort 5 numbers from
largest to smallest
Take out a scratch piece of paper. Tear it into 5 small pieces.
Write the following numbers, one on each piece of paper: 5, 19,
38, 7, 9

Shuffle them around

Take out another piece of paper. Write your name on it.

Write down the steps (an algorithm) to sort these 5 numbers.
Note: You can only view and compare 2 numbers at any single
point in time

© Copyright 2002-2003, University of Washington

Alphabetized CDs

Input: Unordered CDs filling a slotted rack

Output: CDs in slotted rack, alphabetized

P
earl Jam

H
am

pton, Lionel

B
eethoven

W
ynette, Tam

m
y

U
-2

© Copyright 2002-2003, University of Washington

Algorithm for Alphabetizing
1. “Artist_Of” means the name of the group

2. Pick one end of the rack to be the beginning of the alphabetic
sequence. Call that end’s slot the “Alpha” slot

3. Call the slot adjacent to the Alpha slot the “Beta” slot

4. If the Artist_Of the CD in the Alpha slot is later in the alphabet that
the Artist_Of the CD in the Beta slot, then interchange the CDs

5. If there is a slot following the Beta slot, begin calling it the “Beta”
slot and go to step 4; otherwise, continue on

6. If there are two or more slots following the Alpha slot, then begin
calling the slot following the Alpha slot, “Alpha” and the slot
following it the “Beta” slot and go to step 4; otherwise, stop

© Copyright 2002-2003, University of Washington

Different Ideas for Sorting Algorithms
Insertion Sort

Make the first number a list by itself – it is already sorted
“Insert” each number, one at a time, into the correct place
in the list; shift the other numbers if you need to

Bubble Sort
Compare each pair of numbers, one pair at a time; if the
pairs are out of order, swap them.
Keep doing this step until you go through the complete list
without having to swap a single pair

Exchange Sort
Go through the list, at each step swapping the smallest
number into the first slot in the list
Repeat this step with each successive position in the list

© Copyright 2002-2003, University of Washington

Is It An Algorithm, A Program, Or Both?
A program is simply an algorithm specialized to a
particular situation

Alphabetize CDs, if it were a program, would be called an
instance of the Exchange Sort algorithm

Exchange Sort can be specialized to other cases
Sort CD’s by other criteria – title, genre, etc.
Sort books by title, author or ISBN number
Sort homework papers turned in by student ID, or Name

The algorithm, being a process with only a limited
number of specifics, is more abstract than a program

Therefore, all programs are algorithms, but not all
algorithms are programs

