
© Copyright 2002-2003, University of Washington

A Question

What are the five largest cities
in the United States?

(Write down your answers in order on a piece
of scratch paper)

© Copyright 2002-2003, University of Washington

What We Do Best And What Computers
Do Best Are VERY DIFFERENT Things

People are extremely good at:
Resolving ambiguity
Taking context (the particular situation) into account when
processing information

Computers are very good at:
Following explicit instructions over, and over, and over….
Never tiring of the same old routine

Computer are NOT very good at:
Resolving ambiguity
Figuring out the “right” meaning based on a particular situation

So if we want to tell a computer what to do, we must do so
precisely and unambiguously

© Copyright 2000-2001, University of Washington

Basics of Programming

To specify algorithms, especially to a computer,
we must be precise. To be precise, we need a
language that is more exact than our own. A

programming language offers this advantage. All
programming languages have a basic set of

features © Copyright 2002-2003, University of Washington

What’s Different About Programming
Languages?

The Alphabetize CD’s algorithm (see FIT 9) was precise enough
for a person to execute successfully, but computers must have
greater precision

English is too ambiguous and imprecise

Programming languages are formal notations specifically
designed for specifying algorithms – that means each “word” or
“sentence” in a programming language has one and only one
interpretation

The terms are precise and unambiguous!

The programming language we will study this quarter is
JavaScript-a scripting language

© Copyright 2002-2003, University of Washington

Programming involves two critical and interrelated
tasks:

Figuring out/understanding intuitively what steps need to be
taken
Figuring out how to specify those steps precisely

What’s Different About Programming
Languages?

© Copyright 2002-2003, University of Washington

Introduction to Programming Concepts
There are just a few general concepts that apply to
virtually all programming languages

Once you have been exposed to them, you will
practice your language proficiency using Java Script in
your web pages

Because there is, literally, hundreds of ways to arrive
at the same end product, we’ll show you a few paths
to get you started.

© Copyright 2002-2003, University of Washington

Order Matters

CONCEPT: Programming languages execute
instructions in order (unless told to do
otherwise…we’ll get to that point later)

The first things listed in a program get done first

Each instruction is executed one at a time – then the
computer goes on to execute the next instruction

Remember your web pages? The computer
(browser) executed the HTML code in the order you
wrote the statements

© Copyright 2002-2003, University of Washington

General Concepts
CONCEPT: Being able to store, “remember”, change
and access data allows us to write programs that do
the same thing but with different data each time.

The following programming concepts are key:
Variables, Names, Values
Assignments
Expressions
Conditionals
Iteration

We will cover the first several of these concepts today

Also important:
Objects

Properties
Events

© Copyright 2002-2003, University of Washington

Variables
CONCEPT:Variable is the term for a place in
memory where the program can store, access, and
restore information. Names are easier to reference
than number sequences.

All variables have the following three properties:

1. A name so that the program can refer to the variable (a
location in memory)

2. A means to store a (new) value in the variable

3. A means to get (or make a copy of) the value stored in
the variable

© Copyright 2002-2003, University of Washington

Names of Variables
Using the term “variable” reminds us that the value
can change, that it can vary

The names used for variables are arbitrarily
provided:

Variable names must begin with a letter
Variable names can contain any letter, numeral or _
Most languages are case sensitive: a is different than A

Good variable names are meaningful and accurate
Total, avgOfClass, temp, etc. But not x, tToO, y83928
etc.

© Copyright 2002-2003, University of Washington

Values of Variables
Values refer to the information stored in the variable
(location in memory)

Variables can take on different types of values
Numbers: 2, -9, 36452729, 2.3, 3.14159, -666.99
Character sequences or strings: “2”, “dog”, “die90wk”, “ ”
Boolean Values: True or False

In most programming languages, each variable
should only hold one type of value. This is to:

Let the computer know how much memory will be needed to
store
Allow the computer to help detect errors in the code.

© Copyright 2002-2003, University of Washington

Declaring Variables
Variable declaration tells the computer:

That you want a location in memory (the variable)

The way in which you will refer to that location in memory
throughout your program (the variable name)

What type of information you will store in that location in
memory, so the computer will know how much space to
set aside (the variable type)

JavaScript often determines type by the value stored

Java Script - some examples of declaring
variables:

var fname; // declare a variable called name
var fname, address, city; // declare 3 variables: fname,

// address, city

© Copyright 2002-2003, University of Washington

Assigning Values to Variables
CONCEPT: Computers must be told what value to
assign to variables

CONCEPT: The general form of an assignment
statement is
<variable name> <assignment symbol> <expression>

Each language may use a different assignment symbol:
=
:=

Assignment means “gets”, “becomes” or “is assigned” and
we read it left to right: A = B A is assigned B

All three components must always be present

© Copyright 2002-2003, University of Washington

Assigning Values to Variables
CONCEPT: Fundamental property of Assignment

The flow of information is always right - to – left

JavaScript: Some examples of variable assignment (placing a
value in its container)

var myAge = 33; // declare a variable and
// assigns it the value 33

destination = “Chicago”; // assign the value “Chicago” to the
// variable destination

avgOfMidterm = 27; // assigns value of 27 to the variable

avgOfClass = avgOfMidterm;
// assigns whatever value is in the
// variable avgOfMidterm to the variable
// avgOfClass

© Copyright 2002-2003, University of Washington

A Series of Assignments
Now you work it out …

var rock;
var paper;
var scissor;
rock = 2;
scissor = 8;
rock = 4;
rock = scissor;
scissor = 19;
paper = scissor;
rock = scissor + paper;
rock = scissor / paper;

Question:

What’s in rock?

What’s in paper?

© Copyright 2002-2003, University of Washington

What is the Value of Dude?
var dude = 0; //you can also declare variables and

// assign them values at the same time

dude = dude + 1;
dude = dude + 1;
dude = dude + 1;

Questions:
1. What value does the variable dude contain at the end

of this code?
2. What is this code doing?
3. What would be a better variable name for dude?

© Copyright 2002-2003, University of Washington

Expressions
CONCEPT: Expressions are a means of performing
the actual computation in a program. They are
formulae made from variables and operators, e.g.
calculator operations: +, -, *, /, ^

weeks = days / 7; //divide value of days by 7

totalAfterTax = totalPrice * 1.087; //multiply the two values

FullName = “Grace ” + “ Whiteaker”; // add 2 strings together-
// this is called
// concatenation
// result: “Grace Whiteaker”
// stored in FullName

© Copyright 2002-2003, University of Washington

Expressions and Assignment

The Fundamental Rules of Assignment:
The general form of an assignment statement is
<variable name> <assignment symbol> <expression>

The flow of information is always right - to – left

The expression is evaluated before the assignment is made
score = score + 3; // if the value in score before this

// line of code was 5, the 5 is added
// to 3 and then stored back into
// score, eliminating the previous
// value

