
FIT 100

Lab 11: “What’s Your Sign?” with Tables and Procedures

Spring 2002

1. Open Project and Declare a New Variable.. 1
2. Creating a Table.. 4
3. Initializing the table ... 5
4. Procedures ... 6
5. Calling a procedure.. 1
6. Resume initialization of the daysInMonth table .. 7
7. Improve the check for the number of days .. 7
8. Creating an Executable File:.. 9
9. Lab Notebook Questions ... 9

Reading for Lab 11:

• Chapter 6 of Computer Programming Fundamentals with Applications in Visual Basic
6.0

• p. 265-269 (top of page) in Chapter 10 of Computer Programming Fundamentals
with Applications in Visual Basic 6.0

Computer Programming Fundamentals with Applications in Visual Basic 6.0 is on reserve at
Odegaard Undergraduate Library.

Introduction:
Today you will improve your SignFinder, so that is can report more precise errors to the
user. For example, it can indicate that June 31st is an incorrect date. You will also work
with data structures, specifically tables. In VB tables are called collections. Collections are
a way to group together similar items that are important to us and to access them based on
an index (number) or a key (string value). Collections are like the arrays you have read
about in Chapter 13, but instead of using the index to access a value, a key is used instead.

Objectives:

• Continue to gain familiarity with VB controls and their properties
• To see how a table (Collection) can be populated and used in VB
• To see how a procedure is created and why it might be useful

1. Open Project and Declare a New Variable

A. Continue working with a copy of the code that you created in Lab 10.

Copy the Lab10_yourname folder from your Dante account to the
Desktop of the local machine.

B. Rename it Lab11_yourname. Save this newly named folder back to
Dante at the end of lab.

C. Open the project-not the form!- in Visual Basic. Change the caption of
the form to Sign Finder 2.

D. Declare a new variable, called monthName, of String data type. Add
the declaration for this variable at the top of the Code window, under
(General) and (Declarations). It should follow the variable
declarations already there. This is a global variable declaration.

Simple Tables

In this lab we will improve our application by teaching it about the number of
days in each month. For example, there are 31 days in January, 28 days in
February, etc. How would you represent this information? A simple way to
do so is to write a table like this:

 Key:month Value:numdays

 January 31

 February 28

 March 31

 April 30

 May 31

 June 30

 July 31

 August 31

 September 30

 October 31

 November 30

 December 31

The left column contains keys: the key determines which line of the table we
are interested in. The right column contains values: this is the information we
are looking for when given a specific key. For example, if we want to know
the number of days in June, then June is our key. First we find the line in the
table where the Key is June. Then we look in the Values column on that line
to find the desired value: 30.

In this lab, we will keep our life simple. For example, we will deal with just
one column for values. We will treat all Februaries as having 28 days. [PS:
Different authors and programming environments use a variety of words for
what we here call a table, and sometimes use the word table in other ways!]

A table like this is our first example of a “data structure”: a way of grouping
and organizing data. Data structures form an extremely important part of
information technology, both from the theoretical and the practical
standpoints.

The lifecycle of a table in Visual Basic consists of the following stages:

• create a table
• initialize it by storing values in it
• query it by looking up values for given keys as needed

We will go through each of these stages in turn.

2. Creating a Table

A. Declare daysInMonth following the existing variable declarations at the
top of the Code window, under (General) and (Declarations).

To create a table, you simply need to declare a variable for that table in a
particular way. Let’s call our table variable daysInMonth. Then the
declaration will look like this:

Option Explicit
Dim daysInMonth As New Collection

The phrase “As New Collection” hints at the fact that a new object of the Collection class is
being created. We will use the Collection class provided by Visual Basic to implement our
table.

In VB, there are 4 methods that are available to the Collections object. Methods are actions
that can be taken by an object. They are noted in VB syntax just as properties are: the
name of the object, a dot, then the method.

What are the names of the 4 methods and what do they do?
HINT: Use the Object Browser: View>Object Browser
and search for Collections

3. Initializing the Table

Go to the code that handles the click event for the January button. Add
code to do the following:

A. Assign the value “January” to the variable monthName (we will need

this later);

B. Add a line to daysInMonth with key “January” and value 31 (the
number of days in January).

C. Do the same for February and March, using the correct day values.

To initialize the table you need to add to it all the lines that you want to be there.
Remember that each line consists of the key and the value. In general, a line is added to
the table daysInMonth with the following code:

daysInMonth.Add <value>, <key>

*** Remember that the key appears last, and the value first. ***

Querying the table

After all lines have been added to the table, you can query it by supplying the
key you are interested in and asking for the corresponding value. In general,
the following code queries the table daysInMonth:

daysInMonth.Item(<key>)

To use the result, assign it to a variable or use it in a conditional. For
example:

daysInSeptember = daysInMonth.Item(“September”)

Now you will start initializing the table daysInMonth to indicate the correct number of days
in a month. (You will query it later in this lab.)

Here is one way of doing so:
When the user clicks on a month option button, the line for that month will be added to the
table. As a result, when the user clicks on the OK button, the table will already be initialized
for the chosen month.

NOTE You aren’t given the actual VB code that is needed. Test your understanding
by working it out yourself, and writing it out on a piece of paper before trying it on the
computer. Check it with someone, perhaps the person sitting next to you, before typing
it in. (This technique has a name, by the way: “Peer code review.” It is widely used in
industry. Of course, on a project for credit this might not be appropriate!)

D. Doesn’t this sound like repetition? Case for a procedure! (But first,
save your work!)

4. Procedures

A. Plan your own procedure similar to the description above. Choose
concise and meaningful names for the procedure and its parameters.

B. Write the procedure declaration at the bottom of the Code window.

When you need to move to that area later, select General from the
Objects drop-down menu and find the name of the procedure in the
Procedure drop-down menu.

The actions you performed above are a repetition of a general pattern. You
will write a procedure to express this pattern. But let’s start with some
planning.

First, decide what the procedure will do: assign the name of the month to the
variable monthName, and add a line to the daysInMonth table with that
name as the key and the corresponding number of days as the value. Then,
identify the 4 specifications of the procedure. What are they?

Name: a way to refer to the procedure. Make the name something descriptive of
what the procedure does. Let’s call it setMonth.

Parameters: the input and/or output variables used for this procedure (in our case
there are no output variables):

(month As String, numDays As Integer)

Definition: the instructions or procedure body, performing the actions that we
decided upon. For example:

monthName = month
daysInMonth.Add numDays, month

Declaration: put together the entire package: the procedure’s name, parameters
and definition are placed in the declaration. In Visual Basic it is written like this:

Private Sub setMonth (month As String, numDays As Integer)

 monthName = month
 daysInMonth.Add numDays, month

End Sub

5. Resume initialization of the daysInMonth table

A. Go to the code that handles the click event for the April button. Add
code to invoke your procedure (call it) with appropriate actual
parameters. Repeat the same for the remaining months.

B. Now is good time to save your project again, before you start
debugging it. Continue saving it periodically, once you get the next
addition to it to work.

C. Run your program; click on a couple of month buttons. Then interrupt
it by clicking on the Pause button. Now check the values of your
variables. As you did before, go to the top of the Code window, move
your mouse over the variables and verify their values. What should be
the value of the monthName variable? Ensure that monthName
actually has that value.

D. This trick does not work for daysInMonth. Instead, right-click on it
and choose Add Watch; just click OK in the menu that pops up. The
Watch window should occur at the bottom of Visual Basic with this
variable in there. Click on the plus sign and you should see which
values have been stored in it. (By the way, what should be values in
this case?)

E. Save your project

6. Improve the check for the number of days

Remember where your program checks that the number of days the user
enters is correct? How can we improve this check with the new variables?

Calling a Procedure

Let’s look back at what you have done. You started to initialize the table by
adding lines for each month. Then you noticed that it was a rather repetitive
business, so you wrote a procedure to make it easier. Now you should go
back and complete table initialization – this time by invoking your procedure.

Recall that in order to call (or invoke) a procedure, you need to specify its
name and actual parameters. You could write a procedure call in Visual Basic
as follows, assuming it has two parameters:

Call setMonth (<first actual>, <second actual>)

For the procedure that you just wrote, what are the actual parameters going to be?

NOTE The Watch window does not show you the keys, it only
shows values. Also, do not be concerned with the order in which the
values appear – the window shows them in the order they were added.

A. In the Code window go to the click Event Handler (procedure) for the

OK button. Instead of using the number 31 as the maximum allowed
number of days in the conditional, insert a query to the daysInMonth
table. The key for the lookup is the name of the month that the user
selected. It is stored in the variable monthName.

B. Run your code again. Check it for entering reasonable and
unreasonable dates. Does it work correctly?

C. Improve the message that is printed to the user in case the date is
unreasonable. For that, create another error trap called WrongDay to
handle this particular case, as follows. Leave the current ErrorHandler
trap to handle other errors.

a. At the bottom of this sub, insert the following code (shown in bold):

WrongDay:
 MsgBox <you will insert your message here>
Exit Sub

ErrorHandler:
 MsgBox "Please enter a valid date and check a month",
vbOKOnly
 txtUserInput.SetFocus
End Sub

b. In the line with the conditional that checks correctness of the day,
replace “Then GoTo ErrorHandler” with “Then GoTo WrongDay”.

c. Finally, compose the message that the MsgBox will display. It
would say something like “The day you entered is incorrect. There
are only 30 days in April.” adjusting, of course, to the month that
the user selected.

D. Run your program again. Try to enter information that will “break” it.
Can you do it?

E. Create an error trap inside of your setMonth procedure that will, upon

error, remove an item from the code book and then allow the
procedure to re-add it. You are not given the code-use your past labs
and work with error trapping to help you construct the code.

NOTE What happens if you click on an option button after you
have already added the key and value for that month? Most likely you
will get an error because the same key cannot be added twice to a
collection. Keys must be unique.

In addition to removing an item from the collection in the error-trap,
you will need to use one of the collection methods as well as the
Resume statement. Resume simply directs the program to re-
execute the procedure (setMonth). Since the error trap has removed
the item from the collection, re-executing the procedure will allow your
program to add it.

F. After creating the error trap, run your program. Are you able to do

the following without error:
• Look for the sign of a birthday in September
• Then look for the sign of a birthday in March
• Look for ANOTHER birthday in September

7. Creating an Executable File:

A. Make SignFinder executable when you are finished and happy with it.
Save your project and transfer your Lab11 folder to your Dante
account.

B. Remember to log off the machine as you leave.

8. Lab Notebook Questions

A. You want to create a table, say monthNames, that will hold the
names of the months (i.e., the corresponding strings). You want to
look up the names using numbers, from 1 to 12. For example, when
you query the table with the number 5, you get “May”. In your
notebook, write VB code to:
• Create the table,

• Add the line for May to it,

• Query it for that line.

B. Suggest a procedure that does some of the above. What parameters

would it have?

C. A table is an example of a “data structure:” a way of organizing data.
Despite the seeming simplicity, tables are an important data structures
concept and can be very powerful in programming.

• How could you view a telephone book as a table? What are the

keys and values?

• How about Webster’s Dictionary? What are the keys and values?

• Think of another real-world example of a table, and say what
its keys and values are.

D. For Lab 13/14 (we will be working on one lab next week), read

through the lab logic (not the details) and create and interface and
pseudo-code for the program in the same way that the in-class

exercise had you do for conditionals. You will place, in your notebook:

• A sketch of the interface

• Pseudo-code that explains how the program will take user input
at various points (you will want to name the objects and events
used on your interface sketch) and produces a result: the cost
of an ice cream cone.

