
FIT
100

© Copyright 2000-2001, University of Washington

Functions

FIT
100

© Copyright 2000-2001, University of Washington

Functions and Procedures
❖ Similarities:

❏ Little mini-programs that are named and include a series of code
statements (instructions) to be executed when called.

❖ Differences:
❏ Functions have a specific answer (value) to be returned to the

caller when they finish

❖ Functions are often created by a programmer for
computing formulas or performing common math
operations.

❏ This would indicate that they can have parameters and accept
arguments

❖ What is nice for us is Visual Basic has already built in
many of the most common functions. All we have to do
is call them!!!!

FIT
100

© Copyright 2000-2001, University of Washington

Built In Functions in VB
❖ You have already seen 2 common functions used in

Visual Basic
❏ You used them in your first VB lab

❖ What are they?
❏ Remember, a function, when called, returns a specific value

to the calling location of the program

❖ Functions can take none, one or many parameters
❏ Just like procedures

FIT
100

© Copyright 2000-2001, University of Washington

Built In Functions
❖ String

❏ Return a string that is passed as a parameter all in UPPER
CASE, or lower case

❏ Return a particular number of string characters starting on the
left side, or right side, or in between

❏ Count the number of characters in a string
❏ And many more…

❖ Conversion
❏ Return a string value when given a number
❏ Return a number when given a string (if possible)
❏ Convert a string value to a date format

FIT
100

© Copyright 2000-2001, University of Washington

Built In Functions
❖ Mathematical

❏ Returning the integer portion of a particular number
❏ Returning the square root of a number
❏ Rounding a number to the nearest Integer value

❖ Miscellaneous
❏ Return the current system date
❏ Return the current system time
❏ Return a pseudo random number that is greater than 0 and less

than 1
❏ Return a specific intensity of light (color)
❏ Return a string value with a particular format:

✛ Currency, Date, Percent, etc.

FIT
100

© Copyright 2000-2001, University of Washington

Calling a Built In Function
❖ Built in functions will return a specific value

❏ Calling a function is slightly different than calling a procedure
❏ Calling incorporates assignment

❖ The value to be returned must be assigned to a variable
or object property that will hold the same data type

lblALabel.Backcolor = RGB (0, 255, 0)

Dim varColor As Double
varColor = RGB (255, 255, 0)

❖ Function calls like the ones above MUST go on the right
side of assignments. NEVER on the left

A function call can be
used anywhere Visual
Basic expects a value
whose type is the same
as the function return
value type.

FIT
100

© Copyright 2000-2001, University of Washington

More Built-In Function Calls
Dim x as Double
Dim y as Integer
Dim z as String

….
x = RGB (0, 0, 255) frmClock.Caption = Date
frmTemp.BackColor = x

y = 150 lblALabel.Caption = Time
x = RGB (0, y, 255)

y = Int (Rnd()*y) z = “HELLO WORLD!”
y = Int (x) z = LCase (z)

FIT
100

© Copyright 2000-2001, University of Washington

What Have You Learned About
Programming So Far?

Let’s review:
❖ Variables

❖ Expressions
❖ Conditionals
❖ Procedures

FIT
100

FIT
100

© Copyright 2000-2001, University of Washington

Variables
❖ Variables

❏ Locations in memory

❖ Variable names
❏ The way we refer to the

locations in memory in our
program

❖ Variable declaration
❏ Listing the names of

variables to be used in
program

❖ Data types of variables
❏ String, Integer or Double -

there are other types but
we won’t cover them in this
course

❖ Variable initialization
❏ Assigning a value to a variable to

begin with so that we control content

❖ Variable values
❏ The data stored in those memory

locations, subject to change

❖ Assignment statements
❏ The command to change the value of

a variable
<Variable Name> <Assignment Symbol> <Expression>

❏ x= 127 or x = x + 1

FIT
100

© Copyright 2000-2001, University of Washington

Expressions

❖ A means of performing the actual computation

❖ Many kinds of expressions. They can include:

❏ logical operators: And, Or, Not

❏ relational operators: <, >, <=, >=, < >
✛ When used here = means test to see of operands are

the same

❏ binary operators: +, *, &

❏ unary operators : -, ^, Not

FIT
100

© Copyright 2000-2001, University of Washington

Conditionals
❖ Used when a decision must be made between one or more possibilities

(conditions)

❖ Basic conditional
❏ If <T/F Statement> Then ‘tests for one condition: true

❖ General conditional
❏ If <T/F Statement> Then ‘tests for one condition, allows 2

<code statements> outcomes. One for True,
Else the other for False (or otherwise)

<code statements>
End If

❏ If <T/F Statement> Then ‘tests for multiple conditions
<code statements>

Elseif <T/F Statement> Then
<code statements>

…
Else

<code statements>
End If

FIT
100

© Copyright 2000-2001, University of Washington

Conditionals
gradePt = 4.O
If passClass = true then

If theLetterGrade = “A” then
lblGrade.Caption = “You got a “ & gradePt

Else
lblGrade.Caption = “You didn’t quite get a “ & gradePt & “, but you passed!”
End If

Else
lblGrade.Caption = “You did not pass and are nowhere near a ” & gradePt

End If
❖ Take out a piece of paper
❖ What does this program put into lblGrade.Caption if the variables have the

following values:
❏ A) passClass = false; theLetterGrade = “A”;
❏ B) passClass = true; theLetterGrade = “C”
❏ C) passClass = true; the LetterGrade = “A”

FIT
100

© Copyright 2000-2001, University of Washington

Adding Another Condition: ElseIf
❖ The conditional statement (If-Then-Else) is one way you

know, so far, to control which statements are executed.

❖ In VB6, using ElseIf is a way to test a long sequence of
possible conditions:

If <T/F condition> Then
<code statement list> ‘code statements for 1st condition

ElseIf <T/F condition> Then
<code statement list> ‘code statements for 2nd condition

ElseIf <T/F condition> Then
<code statement list> ‘code statements for 3rd condition

….

Else
<code statement list> ‘code statements for “otherwise”

End If

FIT
100

© Copyright 2000-2001, University of Washington

Potential Problems with ElseIf
❖ An If statement that uses ElseIf passes through all of the

previous cases before reaching a given test. What are the
consequences of this?

If num > 10 Then
result = “More than 10”

Elseif num > 20 Then
result = “More than 20”

Else
result = “Less than or equal to 10”

End If

❖ Will the ElseIf statement ever be executed?

FIT
100

© Copyright 2000-2001, University of Washington

Mini-Exercise #1

❖ What is the value of x after the form has been
loaded?

Option Explicit
Dim x As Integer

Private Sub squid()
x=x+2

End Sub

Private Sub Form_Load
x=0
Call squid

End Sub

FIT
100

© Copyright 2000-2001, University of Washington

Mini-Exercise #2
❖ What is the value of y after the form has been

loaded?
Option Explicit
Dim y As Integer

Private Sub squid()
y=y+2

End Sub

Private Sub clam()
call squid
call squid

End Sub

Private Sub Form_Load
y=0
Call squid
Call clam

End Sub

FIT
100

© Copyright 2000-2001, University of Washington

Remember Procedure Structure

❖ Parts of a procedure specification
❏ Name
❏ Definition
❏ Parameters
❏ Declaration

Private Sub calcRecArea (base as Integer, height as Integer, _
area as Integer)

area = base * height

End Sub

FIT
100

© Copyright 2000-2001, University of Washington

Input vs. Output
❖ Many programming languages (including VB6) provided

several different ways of passing values back and forth
between the actual and formal parameters

❖ The default in Visual Basic is pass by reference

❖ Pass by reference allows information to flow in both
directions.

❏ Formal parameters can be used as inputs or outputs or both
❏ Any changes made to a formal parameters will make a change to

the corresponding actual parameter
❏ Remember the Temp Conversion program from last class?

FIT
100

© Copyright 2000-2001, University of Washington

Actual Parameters
❖ The actual parameters must follow these formal/actual

correspondence rules
❏ Same number of actual parameters as formal parameters in the

procedure declaration

❏ Order matters!
✛ The 1st actual parameter corresponds to the 1st formal parameter
✛ The 2nd actual parameter corresponds to the 2nd formal

parameter
✛ Etc, etc, etc

❏ Data types of actual parameters must match data types of formal
parameters

❏ Any formal parameter used as a procedure output must have a
variable for the corresponding actual parameter

FIT
100

© Copyright 2000-2001, University of Washington

Mini-Exercise #3
❖ What is the value of y after the form has been loaded?

Option Explicit

Private Sub Form_Load()
Dim y As Integer
y=0
Call squid(1, y)
Call clam (2, y)

End Sub

Private Sub clam(dork As Integer, zebra As Integer)
call squid (dork, zebra)
dork = zebra + 2
call squid(dork, zebra)

End Sub

Private Sub squid(x as Integer, z As Integer)
z = x+2

End Sub

FIT
100

© Copyright 2000-2001, University of Washington

Exercise # 4
❖ Given the following procedure declaration:

Private Sub example(r As Double, area As Double)
area = 3.1415926 * r ^ 2

End Sub

and the following statements elsewhere in the program:
…
value1=10
value2= 5
Call example(value1, value2)
…

Write a statement with the same affect as the Call
statement

FIT
100

© Copyright 2000-2001, University of Washington

Hmmmm, How Is It Done?
❖ For Wednesday, think about writing a program to do the

following:

10 seconds
9 seconds
8 seconds
7 seconds
6 seconds
5 seconds
4 seconds
3 seconds
2 seconds
1 seconds
Blast Off!!!!!

