FIT 100 Collections

- Collections are data structures that let you track multiple related objects
- Collections use one piece information (a Key) in order to access another piece of information (a Value)
- * A Collection is like a table made of 2 columns
 - One column holds the keys
 - The other column holds values
- * Keys in a Collection must be unique

© Copyright 2000-2002, University of Washingto

FIT 100 Collections: Why use them?

- You might need to keep track of a group of related things
- You might also need to search and find specific information about those related things
- Using a Collection and Iteration will allow you to cycle through many, many rows of information and pick out the one row that is necessary

© Copyright 2000-2002, University of Washington

Collections: How do Luse them? Collections in VB are created just like variables Im phoneList As New Collection declared GLOBALLY, then the whole Form has access to that information Conce a Collection is created, it is initialized declared scheder on the collection table phoneList.Add value>, <key So envise ta envise prices of data that give access to the calcular phoneList.Add "value>, "fore.withered"

Copyright 2000-2002, University of Washington

© Copyright 2000-2002, University of Washington

FIT 100 Searching A List

- If there's no order to the list (like the deck of cards)...
 best you can do is start at the beginning
 - □ This is called sequential or linear search
- Binary search is a simple, common sense way to search through an *ordered* set of items.
 - Questions, often referred to as queries or probes, are asked to find if the desired item is smaller or larger.
 - If the question is chosen from the middle of the sequence, ½ the possibilities are eliminated with each answer.
 - □ It's a bit like 20 questions, but MUCH more specific.

© Copyright 2000-2002, University of Washington

100 How Good is a Particular Algorithm?

- You might think we can't answer this question without programming a computer and trying it.
- Amazingly, it is possible to make very good comparisons between algorithms without programming them!
- Basic idea: estimate the number of "steps" each algorithm needs to solve the problems.
- This gives us an abstract, mathematical way to compare the speed of different algorithms

© Copyright 2000-2002, University of Washington

FIT 100 Algorithm vs. Program

- Remember that an algorithm is an abstraction.
- We can apply it, at least mentally, to a variety of situations, even without a computer
- * A program incorporates all the details needed for a computer to perform the algorithm
- A program for search will encode the algorithm for a specific situation, in a specific language, with specific assumptions

© Copyright 2000-2002, University of Was

FIT 100 Battle of the Algorithms

- Binary Search: Each question allows you to throw out half of the unexamined items (throw half of the phone book away each time)
- Linear Search: Each question lets you tear out only one page, or throw out one card

© Copyright 2000-2002, University of Wa

Do The N	lath for Sear	ching 200	Items
	linear	binary]
step 0	200 remaining	200	-
step 1	199	100	-
step 2	198	50	-
step 3 see where it's going?	197	25	

- * It can be shown mathematically when a sorted list of N items is to be searched:
- Linear sort needs on average about N/2 steps
- Binary sort needs on average about Log₂N steps □ No, you don't have to be able to compute Log₂N ! □ Just remember this, the bigger N is, the bigger the improvement.

Copyright 2000-2002, University of Washingto

FIT 100 Trade-Offs

If we know algorithm A has a better formula than algorithm B:

Would we ever still want to use algorithm B??

Copyright 2000-2002, University of Washington

FIT 100 Searching a small set of things: 20

	linear	binary	
step 0	20 remaining	20	
step 1	19	10	
step 2	18	5	
step 3 Could you tell the difference in time if a computer does the search?	17	3	ton