

100 Do you ever feel like your just a number...

* We are represented numerically in many different ways:
- SSN, Phone Number, Student number
* Things are also represented numerically in many different ways:
- ISBN's
- VIN's - Vehicle Identification Number
* This representation is a way to convey information about us, about things, without actually having those things in hand. But we don't do any arithmetic with those numbers, so WHY use numbers?

FIT

100 Digitization: It's all in the hands

* Definition from OED:
- To convert into a sequence of digits, generally for use in a digital computer.
- To represent in digital form
* Why use digits for numbers like your SSN?
- We don't use the numeric properties of the digits
- We only need to know the SEQUENCE of the digits for pressing buttons, or writing them out
- We use them because digits are familiar to us, and they have short names
* The truth is we could use ANY standard set of symbols to represent people or things. For example...
© Copyright 2000-2002, University of Washington

FIT
100
Just dial Shift+1, Shift+8, Shift+0 ...

* We could adopt any set of symbols to represent information. For instance, simply re-label the buttons on the telephone keypad:

FIT

100 Patterns to Symbols

* A die's patterns can make symbols

- Use the patterns in pairs: 36 symbols

- Use patterns in triples: $6 \times 6 \times 6=216$
- In general, one uses m patterns in sequences of n : $m{ }^{n}$
* Fundamental pattern (PandA): The presence or absence of a phenomenon at a specific place and time
- It's either there or it isn't : Lights, water, magnetism, checkboxes.
- The states MUST be discrete: distinguishable and unambiguous
- When dealing with the computers, the states represent one bit of information

FIT

100 Representing Information

* Keyboard characters can be represented discretely (unambiguously, exactly)
* Imagine you and your friend want to communicate without words (say it's too noisy to talk). You use dice to encode the letters and punctuation to communicate

FIT

100 Bits and Bytes

* It's customary to name the two possible patterns of a bit 1 and 0 , but we could use any names to represent the 2 distinct patterns
* Sequences of 8 bits create a byte
* Two pattern in sequences of 8 ... $m=2, n=8,2_{8}=256$ possibilities from 00000000 to 11111111
* The two pattern options (1 or 0) naturally fall to the term binary for this representation

Names for Patterns	
Present	Absent
On	Off
Yes	No
1	0
True	False
+	-
Black	White
For	Against
Yin	Yang
© copyright 2000-2002, University of Wastington	

FIT
100 Character Representations

* Keyboard characters are encoded into a byte or two
* ASCII is one of many byte encoding of characters

ASCII	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	0 0 1 1	$\begin{array}{l\|} \hline 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{l\|} \hline 1 \\ 0 \\ 1 \\ 0 \end{array}$	$\begin{array}{l\|} \hline 1 \\ 0 \\ 1 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	1 1 0 1 	1 1 1 0	1 1 1 1	Washington
000\%	4	${ }^{2}$	${ }^{3}$	${ }_{5}{ }^{\text {a }}$	4	Σ_{0}	${ }_{*}$	2	${ }^{5}$	\cdots	4	v_{T}	${ }^{*}$	${ }^{\circ} \mathrm{n}$	3_{0}	s_{2}	
OQQI	${ }^{\text {D }}$	${ }^{\circ}$	D_{2}	D_{3}	${ }^{\circ} \mathrm{c}$	*	\star	F_{8}	${ }^{\circ}$	\%	5	${ }_{5}$	${ }^{\prime}$	${ }^{3}$	n_{3}	v_{s}	
0010		1	"	\#	\$	\%	\&	,	()	*	+	,	-	.	1	
00113	0	1	2	3	4	5	6	7	8	9	:	;	$<$	$=$	$>$?	
0100	(a)	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	
0101	P	Q	R	S	T	U	V	W	X	Y	z	[1]	\wedge	-	
0.110	-	a	b	c	d	e	f	8	h	t	1	k	1	m	n	0	
0114	p	q	r	5	t	u	v	w	x	y	z	(1)	\sim	ar	
1000	s	1	x_{z}	3_{2}	${ }^{2}$	${ }_{2}$	s^{3}	${ }_{s}$	${ }_{3}$	\cdots	ys_{3}	$\%$	\cdots	n_{1}	${ }^{3}$	3	
10 Q 1.	${ }^{\circ}$ 。	\cdots	${ }_{2}$	" ε	${ }^{\circ} \mathrm{C}$	\cdots	${ }^{2}$	${ }^{2}$	${ }^{2}$	$\stackrel{\circ}{\circ}$	${ }^{\circ}$	${ }^{\circ} \mathrm{s}$	${ }_{7}$	${ }^{\circ} \mathrm{s}$	\%	*	
1010	\%	1	¢	£	0	7	$!$	§	-	\bigcirc	8	${ }^{*}$	-	-	(1)	-	
1011	$\stackrel{ }{\circ}$	\pm	2	,	-	μ	ร	.	.	${ }^{1}$	σ^{*}	n	$1 / 4$	1/2	3/4	ι	
1.100	A	A	À	Ã	Ȧ	\AA	厄	C	E	E	E	E	1	1	1	1	
1101	Đ	N	O	O	0	0	0	\times	\varnothing	U	Ú	0	0	Y	p	B	
1110	à	á	${ }^{4}$	${ }_{3}$	a	a	\pm	¢	è	e	E	${ }^{\text {e }}$	1	i	${ }_{\text {i }}$		
1.121	\%	ก	d	6	6	\%	\bigcirc	+	g	ù	ú	0	0	ý	p	9	

\section*{	FIT
$\mathbf{1 0 0}$	}

* The character codes represent the characters

65	A
66	B
67	C
97	a
98	b
99	C

\section*{| FIT |
| :---: |
| $\mathbf{1 0 0}$ | Storing Text}

* Information is often stored by charge or magnetic field

Schematic diagram of magnetic spots, like on a disk

* The presence or absence of the magnetic charge can be detected, which leads to a natural association with 1 and 0 to charged/neutral states

Byte 0
Byte 1
Byte 2
Text is stored as a sequence of keyboard characters

FIT
100 Embellishing Text

* Text often has to have specific properties
- Specific fonts, italics, etc.
* To distinguish the text from the modifiers that describe its properties, tag the modifiers
- A tag is a text string, <tag> or </tag>, that modifies text
- Pairs of tags surround the tagged text, e.g. <title>Gone with the Wind</title>
- The "opening" and "closing" tags differ with the addition of the slash to indicate a close
- Not all tags have a "match"
* Software interprets the tags when the text is being processed
- Printed or displayed on a web page

FIT
 100 Numbers

* Computers store text, but they also store numbers
* Numbers are sometimes stored as text characters: 010001100100100101010100001100010011000000110000

* For the most part, numbers are stored directly using binary notation, since it has only two digits, 0 and 1
* Binary numbers and arithmetic are very much like decimal, except instead of 10 digits (0 to 9) there are only 2 (0 and 1) What number is 11110001 ?
* Binary is counting on your fists instead of your fingers!

FIT
 100 Decimal and Binary

$\stackrel{\circ}{*}$	Decimal	Binary	
Symbols: Base	$0,1, \ldots 9$ 10	0,1 2	Binary works just like decimal except the base is 2
Base			
Number xyz	$x * 10^{2}+y * 10^{1}+z * 10^{0}$	x * 2^{2}	$y * 2^{1}+\mathrm{z} * 2^{0}$
Example: 159	$1 * 10^{2}+5 * 10^{1}+9 * 10^{0}$	$1 * 2^{2}$	$+5 * 2^{1}+9 * 2^{0}$
Powers	1, 10, 100, 1000, ..	1,2	8, 16, 32, 64..
Give the binary numbers for: $1000_{2}, 1010_{2}, 1111_{2}$			
Use a subscript to indicate the number base, e.g. $5_{10}, 159_{2}$	$\begin{aligned} & 2^{3} \longleftarrow \\ & 2^{2} \longleftarrow \\ & 2^{1} \longleftarrow \\ & 2^{2} \longleftarrow \end{aligned}$		

FIT
100 Adding is Familiar

* To add in binary use the same technique (algorithm), as decimal but limit your patterns and carries to 0 and $1 .$. everything else works the same way

| 111 | 1 | Carries |
| ---: | ---: | ---: | ---: |
| 110011_{2} | 51 | |
| $111010 \underline{2}$ | $\underline{58}$ | |
| $110110 \underline{2}_{2}$ | 109 | |

* Binary is VERY tedious for humans because there are so many digits (sequences) ... but it benefits circuitry because it uses the 2 states (on/off) efficiently

100 Understanding the Concepts

* Pretend you have a 10-year-old sister and that you'll be going home for the weekend. She tells you that she learned long division in school this week and asks what you learned this week. Tell her you learned about digital representation and explain this concept to her.
* Complete this activity with a partner. Spend 3-5 minutes in discussion
* When you are done discussing, each of you should write a description of digital representation to your 10-yearold sister on the piece of paper provided.

[^0]
FIT

100
Summary

* Patterns are used to create symbols, symbols are used to represent information
* The binary digits (bits) 0 and 1 are a natural way to interpret the presence or absence of a phenomenon
* Bytes are composed of 8 bits, ASCII represents text as one character per byte
* Binary numbers and arithmetic are like decimal except they are limited to the two numerals 0 and 1
* Tags are used to insert modifiers into text and keep it separated from the text

[^0]: © Copyright 2000-2002, University of Washington

