

FIT
100 Remember ...

* Digital data is discrete: unambiguous and exact - It's either "on" or "off"
* With one piece of data (e.g. a light switch), you can represent 2 pieces of information
- "On" or "Off" - even when you use a dimmer switch!!!
* We call a single piece of data with 2 states a bit.
* If we look at a bunch of bits at the same time, we can represent more pieces of information.

BITS	Number of Pieces of Information	Examples
1	2	0, 1
2	4	00, 01, 10, 11
3	8	$000,001,010,011, \ldots$

FIT
 Some Information is Discrete:
 100
 Character Encodings

* Review:
- Keyboard characters are encoded into a byte or two
- ASCII is one of many encoding of the characters + What does ASCII stand for?
- A byte (8 bits) permits 256 things to be represented

100 But Not All Information is Discrete...

* The physical world is analog -sound comes form pushing air with a certain energy at a certain rate, etc.
* By measuring a phenomenon one derives a value (number) of the phenomenon at that moment
* Sampling - taking many measurements at uniform intervals - gives a series of numbers, the digital form

$0, .9, .8,0,-.7,-1,-.3, .4,1, .4,0,-.7,-1,-.3 \ldots$

Digital audio: 44,100 sample/s
2 bytes/sample 2 channels, L \&R 176,400 B/s 635 MB/hour

FIT
100 Digital Data

* Digital samples capture the basic structure of analog data, but it can be inaccurate due to limited precision

FIT

100 Two Advantages of Digital Data

* A computer can "compute on" digital data, enhancing it to remove noise, artifacts of imprecision, etc.

* Digital data can be transmitted and replicated exactly
- The numbers are the complete representation of data
- Assuring each number is duplicated or transmitted accurately, means the data is exact

0.8 .7 . $0-.8-.9-.2$. 8 . $9.2-.7-1-.4$. $61.4-.5-1-.5$. 4 . .sthington

FIT

100 Picture Elements (Pixels)

* The phosphor on the screen naturally displays the on/off property of binary
- Suitable for one color (B\&W) video
- The bits in memory are streamed out on the screen is "raster" order, like a standard TV
* For a color display, three (basic) colors of light must be displayed: red, green and blue (RGB)
- Requires three different numbers, e.g. one byte each
- Range of colors in determined by the intensity of each component
- When all three values are at their maximum, the color is white, and when they are at their minimum the color is black

FIT

Bits as a Medium

* The way that bits represent information is determined by how we interpret the bits

* As separate byte these are: 106, 165, 146
* As ASCII these bytes are: $\mathfrak{v , ¥ \text { , }}$
* As a 24 bit integer these bytes are: 6,989,202
* As a color value these bytes are: \qquad
* Bytes can be interpreted in an unlimited number of ways

1 FIT Bits as a Medium

* What does this string of bits represent?

FIT
 100
 Summary

* Digital representation can be faithfully replicated an transmitted
* It's common to "compute" on a digital representation
* The binary digits (bits) 0 and 1 are a natural way to interpret the presence or absence of a phenomenon
* Binary numbers and arithmetic are like decimal except they are limited to the two numerals 0 and 1
* Bits are bits-what they mean depends on how we interpret their meaning... sometimes they are numbers, sometimes letters, sometimes sound, sometimes color, ...

