Greyscale Images

Each pixel is represented by a number from 0 to 255 (8 bits = 1 byte). This number tells how bright the pixel is

Color Mixing

Primary Colors

Paint mixing primaries
5/1/2002 ${ }^{\text {(Subtractive) }}$

Color Images

$\mathrm{C}, \mathrm{y})=(271,275):(\mathrm{R}, 0,8)=(141,155,200)$
Jova ApplotWindow

172	164	153	151	149	149	162	167
98	85	71	71	75	71	67	66
180	168	147	137	134	142	155	168
101	65	50	51	61	67	64	66
175	166	148	138	132	136	152	170
66	85	54	54	61	63	61	79
96	83	70	69	75	74	68	72
160	156	150	144	133	129	148	172
69	62	62	68	62	57	58	78
86	78	78	80	80	71	68	78
136	139	149	151	144	139	149	173
54	55	66	74	72	64	58	73
88	70	82	92	92	84	73	81
43	47	60	148	153	167	160	175

Each pixel is represented by 3 numbers, the red, blue and green intensities.

Color Images

81	76	83	68	85	107 35	114	120
102	$\begin{aligned} & 96 \\ & 29 \end{aligned}$	$\begin{aligned} & 111 \\ & 40 \end{aligned}$	$\begin{aligned} & 105 \\ & 37 \end{aligned}$	$\begin{aligned} & 114 \\ & 46 \end{aligned}$	$\begin{aligned} & 13 \\ & 133 \\ & 68 \end{aligned}$	$\begin{aligned} & 130 \\ & 65 \end{aligned}$	109
83	86	$\begin{array}{r}95 \\ 36 \\ \hline\end{array}$	$\begin{array}{r}99 \\ .39 \\ \hline\end{array}$	$\begin{array}{r} 101 \\ 42 \\ \hline \end{array}$	112	$\begin{aligned} & 100 \\ & 43 \end{aligned}$	64
39	$\begin{aligned} & 0 \\ & 36 \end{aligned}$	$\begin{aligned} & 0 \\ & 36 \end{aligned}$	50	55	72	70	46
30	$\frac{2}{29}$	${ }_{2}^{0} 8$	$\begin{aligned} & 0 \\ & 25 \end{aligned}$	$\begin{aligned} & 0 \\ & 24 \end{aligned}$	${ }_{27}^{0}$	$\begin{aligned} & 0 \\ & 32 \end{aligned}$	$\begin{aligned} & 3 \\ & 37 \end{aligned}$
24	$\begin{aligned} & 0 \\ & 21 \end{aligned}$	$\frac{0}{22}$	23	$\begin{aligned} & 36 \\ & \hline \end{aligned}$	$\frac{2}{26}$	$\frac{2}{26}$	27

The mix of color intensities provides a wide range of colors

Color Images

When all the color values are high, the pixel is close to white.

Compression

- Most image formats compress the pixel information
- One simple method is Run Length Encoding
- $5,3,8,8,8,8,8,8,8,1,1,9,9,9,9,2$ is shortened to
$5,3, *, 5,8,1,1, *, 4,9,2$
(The * means "the next 2 numbers are a run, the first number is the length, the second is the value.")

More Bytes $=$ More Colors

- 8 bits $=256$ colors
- 24 bits = "Millions of colors"
- 3 color channels (red, blue, green)
- 1 byte per channel

What is a Digital Representation

$$
16,21,35,56,57,56,44, \ldots
$$

CDs store digital information

Analog Representation

- Examples: Vinyl record/watch dial
- Continuous
- An infinite number of possible values
- Accuracy
- Can (potentially) represent with infinite accuracy
- Error prone (in real life)

Digital Representation

- Examples: CD/Digital watch
- Discrete
- Only a few possible values
- Accuracy
- Can only represent an approximation
- (e.g. audio sampling)

Advantages of Digital Reps.

- Easy to manipulate
- Discrete symbols limit complexity
- General
- For example: the compression algorithm described earlier applies to any data represented digitally
- Accurate copying
- Examples: DNA, Napster

