Terms of Endearment

FIT 100, Spring 2005 Fluency in Information Technology

http://www.cs.washington.edu/100

Readings and References

- Reading
 - Fluency with Information Technology
 - » Chapter 1, Terms of Endearment

Le Mot Juste

- Learning le mot juste, the right word for something, aids us in two ways:
 - Helps our learning ... our brains like to connect concepts to words and phrases
 - Helps us to communicate with others ...
 asking "tech support" for help or using
 online HELP requires us to describe the
 problem precisely

Not Another Term?!?

- Blog (from weblog)
- Pod-casting (from broadcasting)
- Geocaching

Terms

- Possibly familiar terms....
 - monitor
 - screen saver
 - CRT vs LCD
 - Pixel (1024X768)
 - RGB
 - motherboard
 - daughterboards/cards

Terms con'd

- CPU (central processing unit)
- [micro] processor
- memory
 - » ROM
 - » RAM (volatile)
 - » hard disk /hard drive

Hardware/Software

- Hardware refers to the physical devices
- Software refers to the programs
 - The instructions for directing a computer
- The main difference is that hardware cannot be changed, while software can be modified
 - The same computer hardware often runs many different software applications
 - The same software application can often run on several different (but similar) computers

More Terms

- Definitions for information technology terms like byte, pixel, etc.. Are found in glossaries
 - There is a glossary in the back of the text book
 - Online glossaries are also handy ...
 - A useful study aid is to start your own glossary, write down the definitions of the new words that you encounter
 - Use Google with define: <term>

More Terms con'd

- Understanding the "tangible" parts of IT is important
 - system board, CPU, memory, disk, etc...
- Understanding the "intangible" parts of IT is important too!
 - algorithm, abstraction, generalization, interface, user model (eg. deadbolt example in the book)

An Algorithm

- algorithm = is a precise and system method for solving a problem
 - Writing out the steps of an algorithm is programming
 - » We as a computer to run a program
 - » A computer *executes* a program when it performs instructions

To Abstract

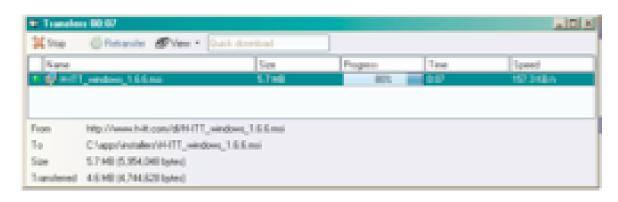
- abstract = to extract or remove something
 - In FIT100 abstracting will usually involve removing the core idea or process from a specific situation (eg. A fable with a moral)
 - » The "thing removed" is an abstraction
 - Humans abstract core ideas, principles, rules, themes, etc... naturally

Imagine A Story...

- The fable of the boy who cried wolf...
 - Shepherd boy was tending his flock of sheep
 - He was lonely, so decided to cry out to the villagers, "wolf, wolf"
 - The villagers came running to his aid, and were very disappointed when they discovered no wolf!
 - Then one day a wolf did actually come and when the boy called out to the villagers, no one came
 - » Moral: no one believes a liar, even one who speaks the truth

To Generalize

- generalize = infer a rule that applies in many situations
 - Suppose you notice that a faucet works like this:
 - » Turn counter-clockwise (left) to turn the water on
 - » Turn clockwise (right) to turn the water off
 - To infer that all faucets work the same way is to generalize


To Generalize con'd

- Can we generalize further?
 - Twisting lids, caps and screws counterclockwise usually opens or loosens them
 - Volume knobs usually work the other way
- Can we create an abstraction from this?
 - A twisting motion is often used as an "on or an off", more or less, a control gesture, but the correct direction is not always obvious unless there are other clues

Operationally Attuned

- Noticing how devices operate simplifies their use
 - Observation: computer programs often give feedback when they are working

Mar-30-05

Speed 2018/A

Operationally Attuned con'd

- Noticing how devices operate simplifies their use
 - Observation: computer programs often give feedback when they are not working
 - So, if you think you're waiting for the computer but there is no indication that its working, its probably waiting for you!
- Look around the screen
 - Is there an input dialog box?
 - Is there an error message that you need to ok?

OH.

Analytical Thinking

- Allows us to talk about changes in a meaningful way
 - By giving facts as a measure of performance
- We can compare changes to other changes

The Speed of Change

- Consider running a mile ...
 - How fast can anyone run a mile?
 - » In 1999 Hakim El Guerrouj ran it in 3.43.13
 - » A rate of 16.134 mph
 - Compare that with Roger Bannister
 - » In 1954 Bannister ran a mile in 3.59.4
 - » A rate of 15.038 mph
 - In 45 years the top runners go 7% faster

new rate - old rate / old rate = percent improvement

A Speed Comparison

- Compared to normal people...
 - How fast can you run the mile?
 - » El Guerrouj ran it in 3.43.13 (16.134mph)
 - » Health people in their 20s run in ~7.30 (8mph)
 - That is, El Geurrouj is twice as fast as you
- El Guerrouj is about a factor-of-2 faster than normal people ...

new rate / old rate = factor of improvement

One More Factor

- How fast do computers run?
 - Univac I ran 100,000 adds(+)/sec in 1954
 - ASCI Red ran 2.1 trillion adds/sec in 1999

(new rate/ old rate = factor of improvement)

2.1 trillion / 100,000 = a factor of 21 million times faster!

Summary

- We reviewed a lot of terms (and more terms!)
- Talked about where to learn more about new terms
- Discussed why its good to be operationally attuned
- Learned how to calculate factors, which we can use to compare changes

