Networking

INFO/CSE 100, Spring 2005 Fluency in Information Technology

http://www.cs.washington.edu/100

Readings and References

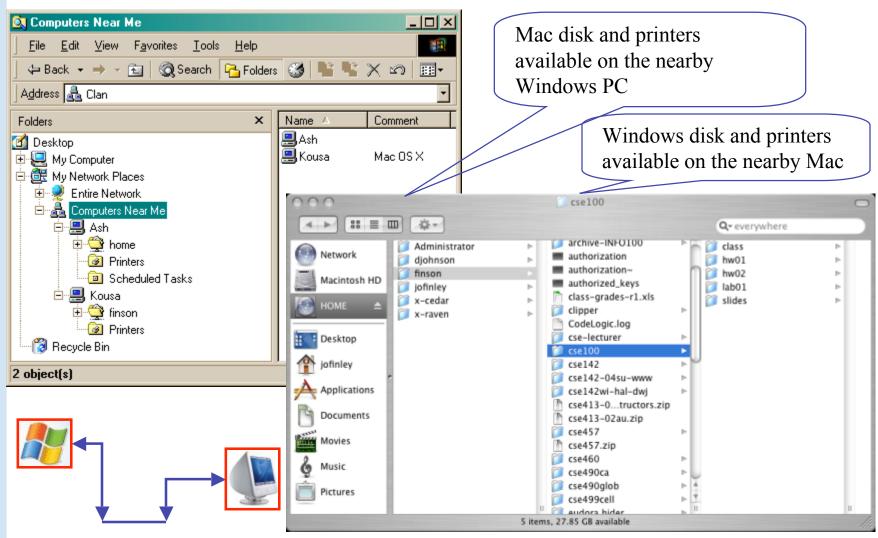
- Reading
 - Fluency with Information Technology
 - » Chapter 3, Making the Connection

Networks...

- Computers are useful alone, but are even more useful when connected (networked)
 - Access more information and software than is stored locally
 - Help users to communication, exchange information. Changing ideas about social interaction
 - Perform other services -- printing, audio, video
 - Immediate answers: for example, Google

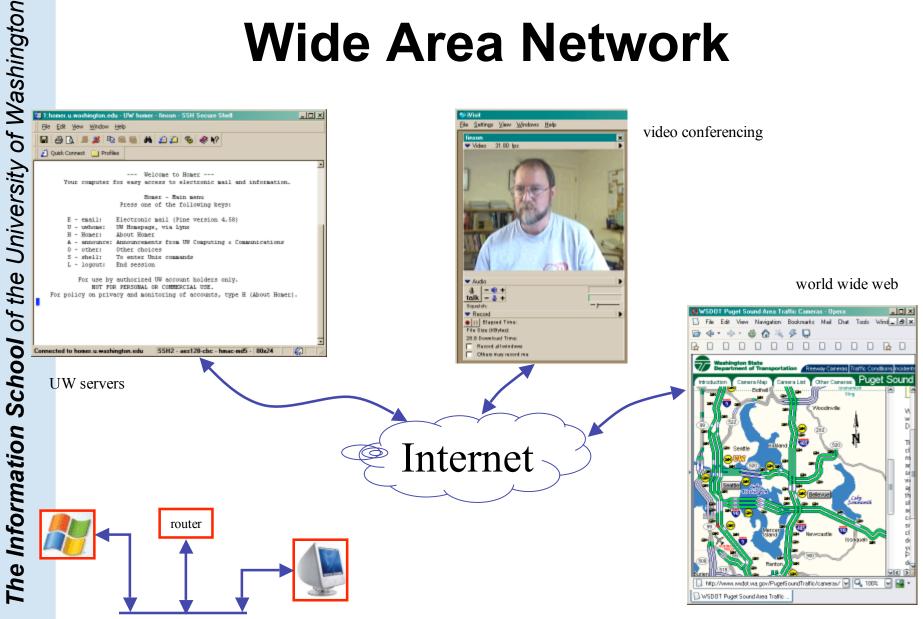
Networking Changes Life

- The Internet is making fundamental changes
 ... the FIT text gives 5 ways
 - Nowhere is remote -- access to information is no longer bound to a place
 - Connection with others email is great! But what about spam?!?
 - Revised human relationships -- too much time spent online could be bad
 - English is becoming a universal language
 - Enhanced freedom of speech, assembly



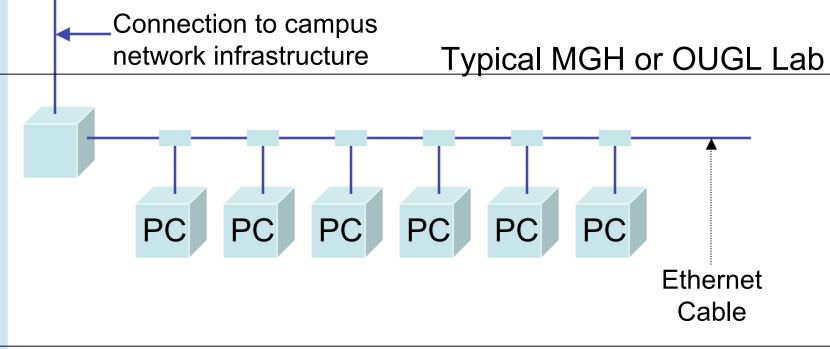
Network Structure

- Internet: all of the wires, fibers, switches, routers, etc... connecting named computers
 - Networks are structured differently based (mostly)
 on how far apart the computers are
 - » Local area network (LAN)
 - A small area such as a room or building
 - » Wide area networks (WAN)
 - Large area, e.g. distance is more than 1Km
 - » What do you think a PAN might be?!?



Local Area Network

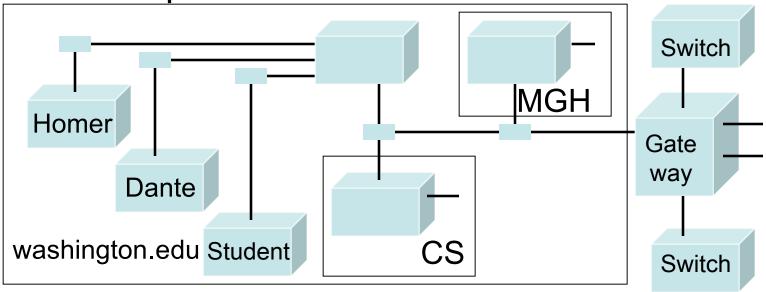
Wide Area Network


Protocol Rules!

- To communicate, computers need to know how to set-up the info to be sent and to interpret the info received
 - Communication rules are a protocol
 - Example protocols:
 - » Ethernet for physical connection in a LAN
 - » TCP/IP -- transmission control protocol/internet protocol
 - » HTTP -- hypertext transfer protocol (for the WWW)
 - » FTP -- file transfer protocol (for transferring files)

LAN in the Lab

- Ethernet is a popular LAN protocol
 - Recall that it's a "party line" protocol



Campus & The World

 The campus subnetworks interconnect computers of the UW domain which connects to the Internet via a gateway

The protocol used is TCP/IP

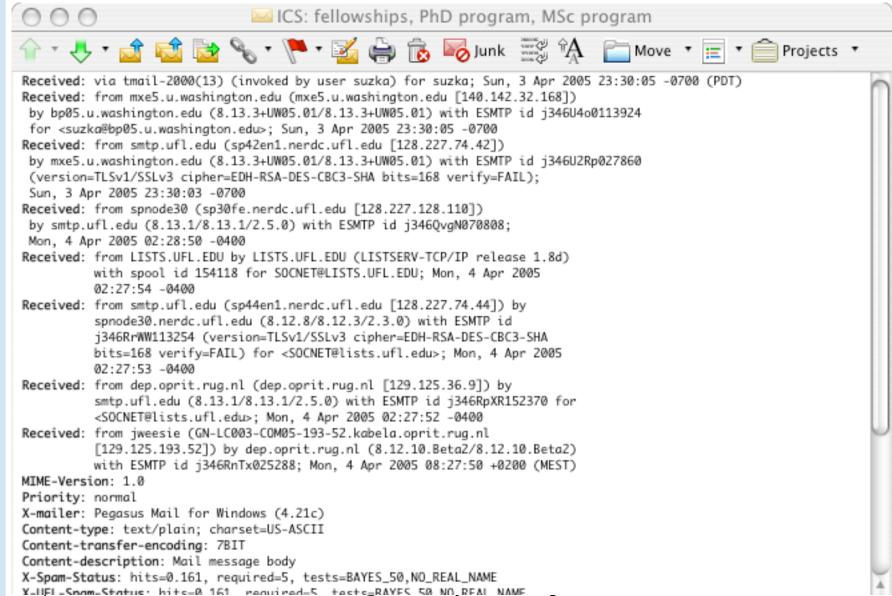
IP -- Like Using Postcards

- Information is sent across the Internet using the Internet Protocol -- postcard analogy
 - Break message into fixed size units
 - Form IP Packets with destination address, sequence number, and content
 - Each makes it way separately to destination, possibly taking different routes
 - Reassembled at destination forming message
 - » Taking separate routes lets packets by-pass conjestion and out-of-service switches

A Trip to Switzerland

 A packet sent from UW to ETH (Swiss Federal Technical University took 21 hops

Нор		IP Address	Node Name	Location		ms		Network	
0 1		128.95.1.207 128.95.1.100	spiff cseresearch cs washington edu	UW Gat	ev	vay	ı	University of Washington WASHINGTON University of Washington WASHINGTON University of Washington UW-SEA	
3			hnsp1-wes-ge-0-0-0-0.pnw-gigapop.net			0		Verio, Inc. VRIO-198-106	
4			abilene-pnw.pnw-gigapop.net			5		University of Washington UW-SEA29	
5			stting-sttl.abilene.ucaid.edu			0		Exchange Point Blocks NET-EP-1	
6		198.32.8.50	dnvr-sttl.abilene.ucaid.edu			35		Exchange Point Blocks NET-EP-1	
7		198.32.11.111	-			27		Exchange Point Blocks NET-EP-1	
8			kscy-dnvr.abilene.ucaid.edu			40		Exchange Point Blocks NET-EP-1	
9			kscyng-kscy.abilene.ucaid.edu			34		Exchange Point Blocks NET-EP-1	
10			iplsng-kscyng.abilene.ucaid.edu			281		Exchange Point Blocks NET-EP-1	
11			chinng-iplsng.abilene.ucaid.edu			52		Exchange Point Blocks NET-EP-1	
12			nycmng-chinng.abilene.ucaid.edu			72		Exchange Point Blocks NET-EP-1	
13			nycm-wash.abilene.ucaid.edu			68		Exchange Point Blocks NET-EP-1	
14			abilene-gtren.de2.de.geant.net	(United Kingdor		165		IP allocation for GEANT network	
15		62.40.96.62	de.it1.it.geant.net	(United Kingdor		171		IP allocation for GEANT network	
16			it.ch1.ch.geant.net	(United Kingdor		183		IP allocation for GEANT network	
17		1	swiCE2-P6-1.switch.ch	(United Kingdor		178		IP allocation for GEANT network	
18		1	swiEZ2-G2-2.switch.ch	(Switzerland)		187		SWITCH Teleinformatics Services SWITCH-LAN	
19			rou-eth-switch-1-giga-to-switch.ethz.ch	(Switzerland)		192		Swiss Federal Institute of Technology ETH-NET6	
20			rou-rz-1-mega-transit-2.ethz.ch	(Switzerland)		188		Swiss Federal Institute of Technology ETH-ETHER	
21		129.132.1.15		(Switzerland)		192		Swiss Federal Institute of Technology ETH-ETHER	
Roun	Roundtrip time to eth.ch, average = 192ms, min = 187ms, max = 204ms 14-Nov-02 1:39:08 PM								


Check Internet Hops

- There are numerous Trace Route utilities
 - Windows: tracert, OSX: Network Utility

```
Command Prompt
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
Z:>>tracert dante.u.washington.edu
Tracing route to dante.u.washington.edu [140.142.14.69]
over a maximum of 30 hops:
                                     eureka-GE1-6.cac.washington.edu [128.208.5.100]
                                     iron-GE-1-8.cac.washington.edu [140.142.153.68]
dante76.u.washington.edu [140.142.14.69]
Trace complete.
Z:\>tracert tube.tfl.gov.uk
Tracing route to tube.tfl.gov.uk [217.28.130.10]
over a maximum of 30 hops:
                                     eureka-GE1-6.cac.washington.edu [128.208.5.100]
uwbr1-ge2-2.cac.washington.edu [140.142.155.23]
                   <1 ms
        <1 ms
                                     cnsp1-ads-ge-0-0-0.pnw-gigapop.net [198.107.150.4]
unknown.Level3.net [209.247.84.37]
                   1 ms
                                ms
                                     so-7-0-0.mp2.Seattle1.Level3.net [64.159.1.165]
                     ms
                                ms
                                     so-0-1-0.bbr1.NewYork1.Level3.net [64.159.1.41]
                  134 ms
                                     4.68.128.105
                            134 ms
                                     ge-3-0-0-0.gar2.London1.Level3.net [4.68.128.126]
                 134 ms
                            134 ms
                 134 ms
                                     so-6-0.metro1-londencyh00.London1.Level3.net [212.113.3.30]
                 134 ms
                            134 ms
                                     213.232.65.153
       135 ms
                 135 ms
                           135 ms
135 ms
       135 ms
                 146 ms
                                     217.28.130.10
Trace complete.
Z:\>_
```


Email Headers!

Naming Computers

- Computers connected to the Internet are part of a network domain
 - A hierarchical scheme that groups computers

.edu

.washington.edu
dante.washington.edu
.ischool.washington.edu
.cs.washington.edu
june.cs.washington.edu

All educational computers
All computers at UW
A UW computer
iSchool computers
CSE computers

A CSE computer

Naming Computers con'd

- Computers are named by IP address, four numbers in the range 0-255
 - cse.washington.edu: 128.95.1.4
 - ischool.washington.edu: 128.208.100.150
 - » Remembering IP address would be brutal for humans, so we use domain names
 - » Computers find the IP address for a domain name from the Domain Name System (DNS)
 - An IP address-book for the computer

Domains

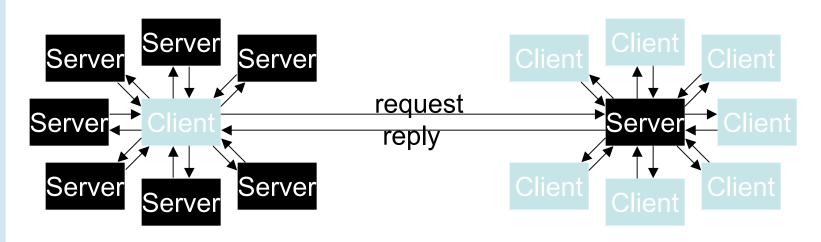
- .edu, .com, .mil, .gov., .org, .net domains are the "top level domains" in the USA
 - Recently added TLD names include:
 - » .biz, .info, .name, .pro, .aero, .coop, .museum, .tv
- Each country has a TLD name: .ca
 (Canada), .es (Spain), .de (Germany), .au
 (Australia), .uk (England), .us (USA)
- The FIT book contains the complete list of country domains

Logical vs. Physical

- There are 2 ways to view the Internet
 - Humans see a hierarchy of domains relating computers
 - » Logical network
 - Computers see groups of four-number IP addresses
 - » Physical network
 - Both are ideal for the "users" needs
- Domain Name System (DNS) relates the logical network to the physical network by translating domains to IP addresses

Client/Server Structure

- The Internet computers rely on the client/protocol: services provide services, clients use them
 - Samples servers: email server, web server, ftp server
 - UW servers: dante, courses, www
 - Frequently, a "server" is actually many computers acting as one, e.g. dante is a group of more than 50 servers
- Protocol: client packages a request and sends it to a server; Server does the service and sends a reply


World Wide Web

- World Wide Web (WWW) is a collection of servers (subset of Internet computers) and the info they give access to using the HTTP protocol
 - WWW is not the same as the Internet
 - The "server" is a web site computer and the "client" is a web browser (like Internet Explorer)
 - Many Web server's domain names begin with www by tradition, but any name is OK
 - Often multiple servers map to the same site: moma.org and www.moma.org

Client/Server Interaction

- For Web pages, the client requests a page the server returns it: there's no permanent connection, just a short conversation
 - Details of the conversation are specified by HTTP

Dissecting a URL

- Web addresses are URL (uniform resource locator)
 - A server address and a path to a particular file
 - URLs are often redirected to other places
 - » http://www.cs.washington.edu/100
 - » http://www.cs.washington.edu/education/courses/cse100/CurrentQtr/calendar100.html

protocol = http://

Web server = www

domain = .cs.washington.edu

path = /education/courses/100/04au/ directories (folders)

file = index

file extension = .html hypertext markup language

Summary

- Networking is changing the world
 - Internet: named computers using TCP/IP
 - WWW: servers providing access to information
 - Principles
 - » Local network of domain names
 - » Physical network of IP address
 - » Protocols rule: LAN, TCP/IP, HTTP
 - » Domain Name System connects the two
 - » Client/Server, fleeting relationship on WWW

