

Announcements

Project 3 will be assigned Friday Midterm 2 will be returned in sections Today & Thursday

Spreadsheets

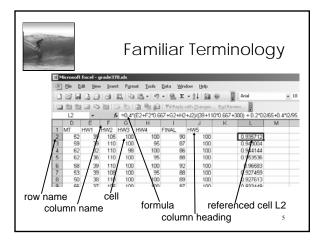
Spreadsheets are a powerful abstraction for organizing data and computation

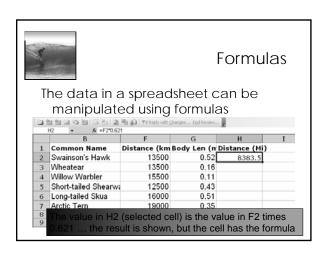
© Lawrence Snyder 200

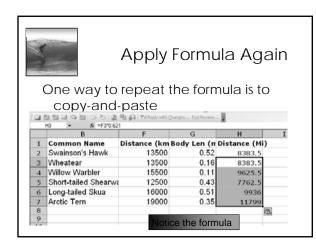
An Array of Cells

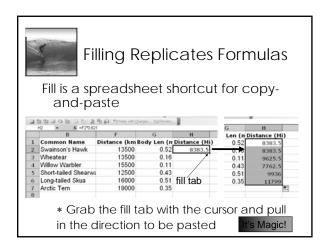
A spreadsheet is a 2 dimensional array of cells ... it's 3D with multiple sheets

- * The idea is that the rows or columns represent a common kind of data
 - They will be operated upon similarly, so that's easy to do
 - Adding more data of the same type means adding more rows or columns
 - Often spreadsheets contain numbers, but text-only spreadsheets are useful, too

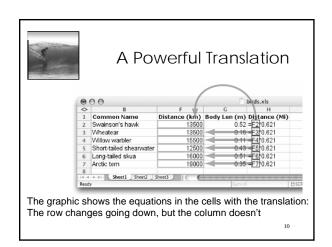



Looking for Similar Ideas


Spreadsheets are not so unusual ...


- * The position (row/column) names the data, as with memory locations, variables, forms...
- * Operating on all elements of a column (or row) is an iteration, though not usually a WFI
- * Setting a cell to a formula is an (unevaluated) assignment statement with cells as variables
- * The formula is an expression
- * Functions are (built-in) functions

hink of spreadsheets as a handier sterface for computing ideas than JS



Relative & Absolute Addr

Reference to cells happens in 2 ways: Relative and Absolute (with \$)

- * F2 relative column, relative row
- * F\$2 relative column, absolute row
- * \$F2 absolute column, relative row
- * \$F\$2 absolute column, absolute row Relative references change when pasted/filled; absolute references do

not change Your intent determines which to pick

A Example

Creating a discount table is case of using both relative and absolute refs

- * Consider store credit of \$1 per \$10 spent
- * \$3 store credit for every 2 CDs (1 earns \$1)

	1	2	3	4	5	6	7	8
\$10.00	\$2.00	\$4.00	\$5.00	\$7.00	\$8.00	\$10.00	\$11.00	\$13.00
\$20.00	\$3.00	\$5.00	\$6.00	\$8.00	\$9.00	\$11.00	\$12.00	\$14.00
\$30.00	\$4.00	\$6.00	\$7.00	\$9.00	\$10.00	\$12.00	\$13.00	\$15.00
\$40.00	\$5.00	\$7.00	\$8.00	\$10.00	\$11.00	\$13.00	\$14.00	\$16.00
\$50.00	\$6.00	\$8.00	\$9.00	\$11.00	\$12.00	\$14.00	\$15.00	\$17.00
\$60.00	\$7.00	\$9.00	\$10.00	\$12.00	\$13.00	\$15.00	\$16.00	\$18.00

A cell is based on first column, top row data in that row and column ... must mix relative and absolute references

Series

Another handy property of fill is that it can make a series based on constants

- * Fill Sunday => Monday, Tuesday, Wed...
- * Fill 22 Feb => 23 Feb, 24 Feb, 25 Feb, ...

More generally

- * Series fill will even count using a constant
- * Counting by odd sizes: give 1st two items

12