

Announcements

Project 1A is due today at 5:00 Midterm 1 is next Friday In this room ... arrive on time Cover material in 1st 9 Lectures + Labs Bring only Photo ID and a pencil/pen

Tip of the day: The most useful habit for successful computing is that of being perfectly accurate

Debugging & Troubleshooting

"To err is human, but it takes a computer to really foul things up"

© 2006 Lawrence Snyder

Using Computers...

In IT, stuff goes wrong ... debugging is the process of finding the error * Term coined by Grace Murray Hopper
Best solution ... make no mistakes!
* Be accurate ... get it right the 1st time
* In most cases computers can't recover for our errors

The standard of precision for computers is perfect, which is tough for people, but try!

When You Debug...

Debugging is not algorithmic: no guaranteed process There are guidelines for debugging... Rather than trying things aimlessly and becoming frustrated, think of yourself as solving a mystery Become Sherlock Holmes

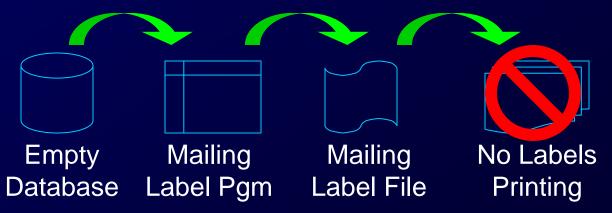
- Be objective: What are my clues? What is my hypothesis? Do I need more data?
- Consciously 'watch' yourself debug -- its an out-ofbody experience
- When stumped, don't become frustrated, but ask, "What am I misunderstanding?"

Debugging Guidelines

- 1. Verify that the error is reproducible
- 2. Determine exactly what the problem is
- 3. Eliminate the "obvious" causes
- 4. Divide process into working/faulty parts
- 5. On reaching a dead end, reassess the information you have, trying to identify the mistake you are making Memorize?
- Work through process making predictions and checking they're fulfilled

Reproducibility

First step: verify the error is reproducible * Transient errors are very rare, but they do happen ... try again


Getting Out and Getting Back In

 Rebooting the operating system is advisable, especially for errors involving peripheral devices (printers, modems)

Determine the Problem

 Second step: figure out what's wrong
 * Often there is a sequence of steps following an error and propagating it ... work backwards looking to see where the error first occurred

Eliminate the Obvious

Third step: eliminate obvious causes "If the cause were so obvious, the problem would have been fixed!"

- * There are standard things to check:
 - Inputs
 - Connections
 - "Permissions"
 - Physical connectivity

"Working" in similar situations is usually good enough

Isolate the Problem

Fourth Step: Try to divide the situation into working and non-working parts

- Form a hypothesis of what's wrong
- Make as few assumptions as possible
- Take nothing for granted

The goal is to eliminate as many things from consideration as possible

At a Dead End, Reassess

Fifth Step: When everything seems to check out, don't get frustrated ... ask, "What am I misunderstanding?" * Your goal is to see the situation as it is, not as you think it should be

- Are you assuming too much?
- Are you mis-reading the clues?

Sometimes, stepping back to the surrounding context is helpful

Make Predication/Check

Sixth: Beginning with the isolated part, step through the process, predicting the outcome and verifying it

* A prediction that is not fulfilled shows...

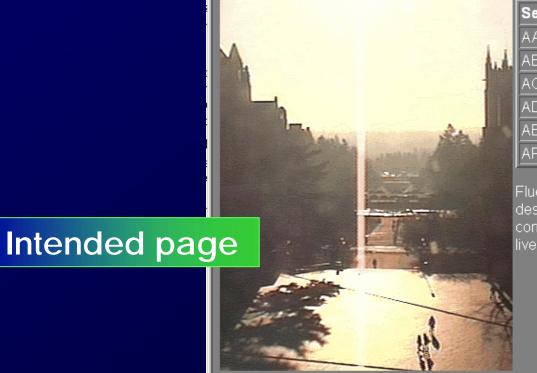
- A possible bug
- A possible misunderstanding
- A chance to narrow the search

'Sleeping on it' may help!



After building a class web page, we find it is wrong

FIT100: Bringing Light to Computer Users


Fluency with Information Technology is designed to teach students to use computers today and throughout their lives. It's a lot of work, but it's worth it!

Debugging Demo

FIT100: Bringing Light to Computer Users

Winter 2006

Fluency with Information Technology is designed to teach students to use computers today and throughout their lives. It's a lot of work, but it's worth it!

Summary

14

Debugging is not algorithmic, but there are guidelines to follow

- It probably pays to memorize them so they come to mind while debugging
- Watch yourself debug -- assess how you are doing, what you need to know

 Being accurate -- avoiding textual mistakes at all costs -- saves frustration

Notice how few letters mess up a whole page