

Announcements

Project 1B due Today at 11:00 PM Midterm Friday, in class

More Digital Representation

Discrete information is represented in binary (PandA), and "continuous" information is made discrete

Return To RGB

Images are constructed from picture elements (pixels); color uses RGB light

The RGB color intensities are specified by 3 numbers in the range [0, 255], ie 1 byte each

Black = [0, 0, 0]

0000 0000 0000 0000 0000 0000

Gray = [128,128,128]

1000 0000 1000 0000 1000 0000

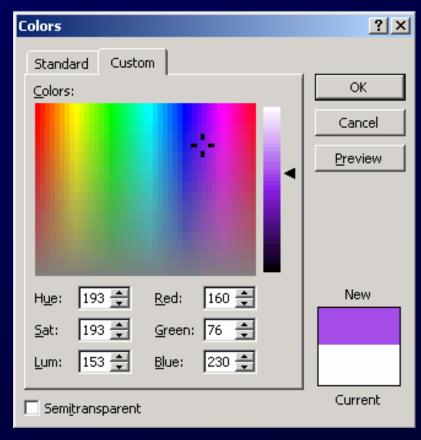
White = [255,255,255]

1111 1111 1111 1111 1111 1111

White-gray-black all have same values for RGB

Colors

Colors use different combinations of


RGB

Husky Purple

Red=160

Green=76

Blue=230

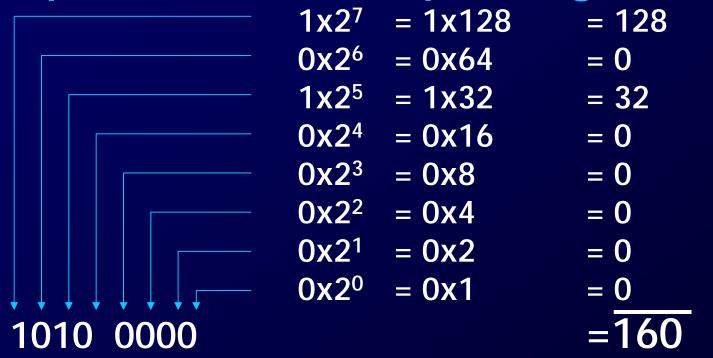
Positional Notation

The RGB intensities are binary numbers Binary numbers, like decimal numbers, use place notation

$$1101 = 1x1000 + 1x100 + 0x10 + 1x1$$
$$= 1x10^{3} + 1x10^{2} + 0x10^{1} + 1x10^{0}$$

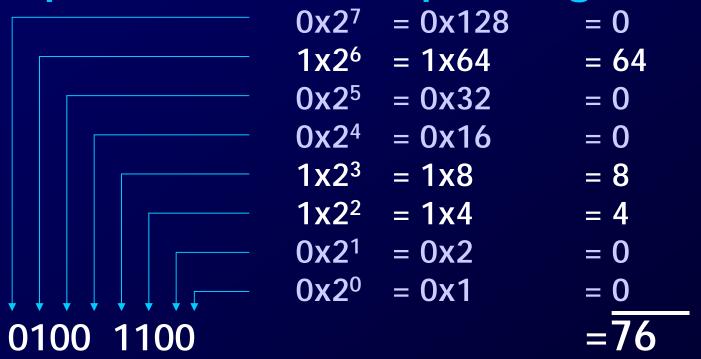
except that the base is 2 not 10

$$1101 = 1x8 + 1x4 + 0x2 + 1x1$$
$$= 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0$$

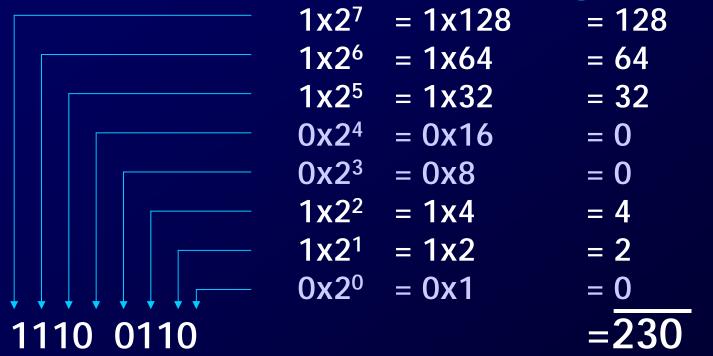

Base or radix

1101 in binary is 13 in decimal

Binary Numbers


Given a binary number, add up the powers of 2 corresponding to 1s

Binary Numbers


Given a binary number, add up the powers of 2 corresponding to 1s

Binary Numbers

Given a binary number, add up the powers of 2 corresponding to 1s

Husky Purple

Recall that Husky purple is (160,76,230) which in binary is

1010 0000 0100 1100 1110 0110

160

76

230

Suppose you decide it's not "red" enough

Increase the red by 16 = 1 0000

1010 0000

+ 1 0000

1011 0000

Adding in binary is pretty much like adding in decimal

A Redder Purple

Increase by 16 more

The rule: When the "place sum" equals the radix or more, subtract radix & carry

Fill in the Table:

Num Being Converted		230	102	38	6	6	6	2	0
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6			2	0	
Binary Num	O	1	1	1	0	0	1	1	0

Place number to be converted into the table; fill place value row with decimal powers of 2

Num Being Converted									
Place Value	256	128	64	32	16	8	4	2	1
Subtract									
Binary Num									

Num Being Converted		- 230							
Place Value	256	128	64	32	16	8	4	2	1
Subtract									
Binary Num	0								

Num Being Converted		- 230	102						
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102							
Binary Num	0	1							

Num Being Converted		- 230	102	38					
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38						
Binary Num	0	1	1						

Num Being Converted		- 230	102	38	6				
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6					
Binary Num	0	1	1	1					

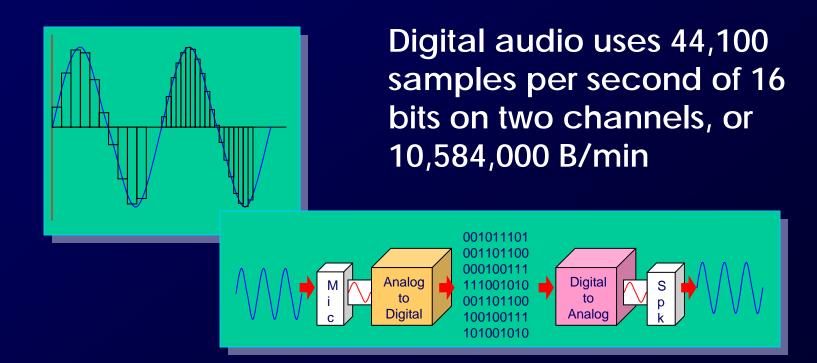
Num Being Converted		- 230	102	38	6· 1	→ 6			
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6					
Binary Num	0	1	1	1	0				

Num Being Converted		- 230	102	38	6	→ 6	• 6		
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6					
Binary Num	0	1	1	1	0	O			

Num Being Converted		- 230	102	38	6	→ 6	• 6	2	
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6			2		
Binary Num	0	1	1	1	0	0	1		

Num Being Converted		- 230	102	38	6	→ 6	• 6	2	0
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6			2	0	
Binary Num	O	1	1	1	0	O	1	1	

Rule: Subtract PV from the number; a positive result gives new number and "1"; otherwise, "0"


Num Being Converted		- 230	102	38	6	→ 6	• 6	2	0
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6			2	0	
Binary Num	O	1	1	1	0	0	1	1	O

Read off the result: 0 1110 0110

Digitizing

"Continuous" information like light and sound must be made "discrete"

Compression

Compression: use fewer bits

JPEG

* Lossless –Recoverthe data

* Lossy-Lose the original data

Original

Over compressed

Run-Length Compression

Give number of 1s, number of 0s, etc.

```
11111111111... (270 1s)

11111111111... (270 1s)

11000000000... (2 1s)(266 0s)(2 1s)

11000000000... (2 1s)(266 0s)(2 1s)
```

Forget row encoding ... alternate

[Size: 270x200](542)(266)(4)(266)(4)(266)(4)(266) ...

Bits Are It

Bits represent information, but their interpretation gives bits meaning

0000 0000 1111 0001 0000 1000 0010 0000

 Could be a number, color, instruction, ASCII, sound samples, IP address, ...

Bias-free Universal Medium Principle: Bits can represent all discrete information; bits have no inherent meaning

Summary

Bits can represent any information

- Discrete information is directly encoded using binary
- * Continuous information is made discrete
- * Bias-free Universal Medium Principle