

#### Announcements

Project 3 will be assigned Friday

Midterm 2 will be returned in sections

Today & Thursday



## Spreadsheets

Spreadsheets are a powerful abstraction for organizing data and computation



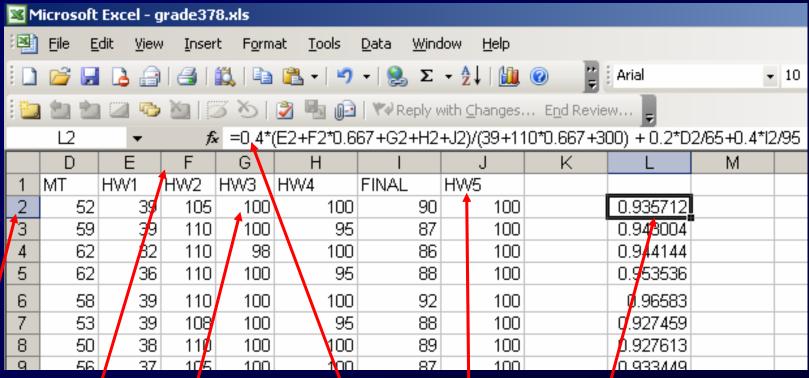
## An Array of Cells

## A spreadsheet is a 2 dimensional array of cells ... it's 3D with multiple sheets

- \* The idea is that the rows or columns represent a common kind of data
  - They will be operated upon similarly, so that's easy to do
  - Adding more data of the same type means adding more rows or columns
  - Often spreadsheets contain numbers, but text-only spreadsheets are useful, too



### Looking for Similar Ideas


#### Spreadsheets are not so unusual ...

- \* The position (row/column) names the data, as with memory locations, variables, forms...
- \* Operating on all elements of a column (or row) is an iteration, though not usually a WFI
- \* Setting a cell to a formula is an (unevaluated) assignment statement with cells as variables
- \* The formula is an expression
- \* Functions are (built-in) functions

Think of spreadsheets as a handier interface for computing ideas than JS



## Familiar Terminology



row name cell column name

formula referenced cell L2 column heading 5



#### **Formulas**

# The data in a spreadsheet can be manipulated using formulas

| 🗓 🖢 🐿 🖾 🤝 🦄   🎜 💍 🖟 📳 📵   🕶 Reply with Changes End Review |                      |              |             |               |   |  |  |  |  |
|-----------------------------------------------------------|----------------------|--------------|-------------|---------------|---|--|--|--|--|
| H2 ▼ f₂ =F2*0.621                                         |                      |              |             |               |   |  |  |  |  |
|                                                           | В                    | F            | G           | Н             | I |  |  |  |  |
| 1                                                         | Common Name          | Distance (km | Body Len (n | Distance (Mi) |   |  |  |  |  |
| 2                                                         | Swainson's Hawk      | 13500        | 0.52        | 8383.5        |   |  |  |  |  |
| 3                                                         | Wheatear             | 13500        | 0.16        |               |   |  |  |  |  |
| 4                                                         | Willow Warbler       | 15500        | 0.11        |               |   |  |  |  |  |
| 5                                                         | Short-tailed Shearwa | 12500        | 0.43        |               |   |  |  |  |  |
| 6                                                         | Long-tailed Skua     | 16000        | 0.51        |               |   |  |  |  |  |
| 7                                                         | Arctic Tern          | 19000        | 0.35        |               |   |  |  |  |  |
| - 000000                                                  |                      |              |             |               |   |  |  |  |  |

The value in H2 (selected cell) is the value in F2 times 0.621 ... the result is shown, but the cell has the formula



## Apply Formula Again

One way to repeat the formula is to copy-and-paste

| End Review                           |                      |              |             |              |    |  |  |  |
|--------------------------------------|----------------------|--------------|-------------|--------------|----|--|--|--|
| H3 <b>▼</b> f <sub>8</sub> =F3*0.621 |                      |              |             |              |    |  |  |  |
|                                      | В                    | F G          |             | Н            | I  |  |  |  |
| 1                                    | Common Name          | Distance (km | Body Len (n | Distance (Mi | i) |  |  |  |
| 2                                    | Swainson's Hawk      | 13500        | 0.52        | 8383.5       |    |  |  |  |
| 3                                    | Wheatear             | 13500        | 0.16        | 8383.5       | ·  |  |  |  |
| 4                                    | Willow Warbler       | 15500        | 0.11        | 9625.5       |    |  |  |  |
| 5                                    | Short-tailed Shearwa | 12500        | 0.43        | 7762.5       |    |  |  |  |
| 6                                    | Long-tailed Skua     | 16000        | 0.51        | 9936         |    |  |  |  |
| 7                                    | Arctic Tern          | 19000        | 0.35        | 11799        |    |  |  |  |
| 8                                    |                      |              |             |              | œ. |  |  |  |
| 9                                    | Notice the formula   |              |             |              |    |  |  |  |
| 10                                   | Notice the formula   |              |             |              |    |  |  |  |



## Filling Replicates Formulas

#### Fill is a spreadsheet shortcut for copyand-paste

| 1 2 | 1 2 2 5 2 5 5 2           |              |             |               |        |               |
|-----|---------------------------|--------------|-------------|---------------|--------|---------------|
| ŀ   | d2 <b>▼  f</b> ≥ =F2*0.62 | G            | Н           |               |        |               |
|     | В                         | F            | G           | Н             | Len (n | Distance (Mi) |
| 1   | Common Name               | Distance (km | Body Len (n | Distance (Mi) | 0.52   |               |
| 2   | Swainson's Hawk           | 13500        | 0.52        | 8383.5        | 0. 0   | 8383.5        |
| 3   | Wheatear                  | 13500        | 0.16        | <b></b>       | 0.11   |               |
| 4   | Willow Warbler            | 15500        | 0.11        |               | 0.43   | 7762.5        |
| 5   | Short-tailed Shearwa      | 12500        | 0.43        |               | 0.51   | 9936          |
| 6   | Long-tailed Skua          | 16000        | 0.51        | fill tab      | 0.35   | 11799         |
| 7   | Arctic Tern               | 19000        | 0.35        |               |        | <b></b>       |
| 8   |                           |              |             |               |        |               |

\* Grab the fill tab with the cursor and pull in the direction to be pasted It's Magic!

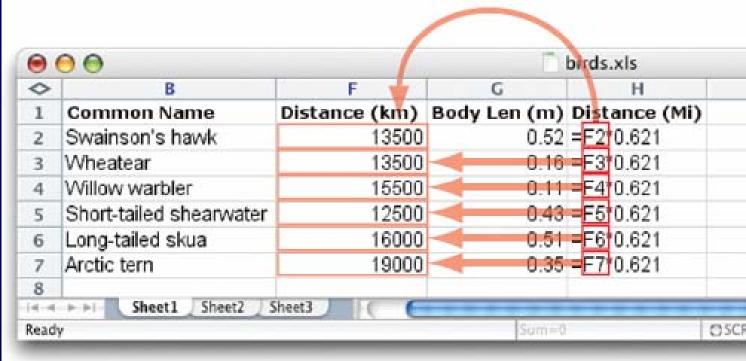


#### Relative & Absolute Addr

## Reference to cells happens in 2 ways: Relative and Absolute (with \$)

```
* F2 relative column, relative row
```

\* F\$2 relative column, absolute row


\* \$F2 absolute column, relative row

\* \$F\$2 absolute column, absolute row

Relative references change when pasted/filled; absolute references do not change Your intent determines which to pick



#### A Powerful Translation



The graphic shows the equations in the cells with the translation: The row changes going down, but the column doesn't



### A Example

# Creating a discount table is case of using both relative and absolute refs

- \* Consider store credit of \$1 per \$10 spent
- \* \$3 store credit for every 2 CDs (1 earns \$1)

|         | 1      | 2      | 3       | 4       | 5       | 6       | 7       | 8       |  |
|---------|--------|--------|---------|---------|---------|---------|---------|---------|--|
| \$10.00 | \$2.00 | \$4.00 | \$5.00  | \$7.00  | \$8.00  | \$10.00 | \$11.00 | \$13.00 |  |
| \$20.00 | \$3.00 | \$5.00 | \$6.00  | \$8.00  | \$9.00  | \$11.00 | \$12.00 | \$14.00 |  |
| \$30.00 | \$4.00 | \$6.00 | \$7.00  | \$9.00  | \$10.00 | \$12.00 | \$13.00 | \$15.00 |  |
| \$40.00 | \$5.00 | \$7.00 | \$8.00  | \$10.00 | \$11.00 | \$13.00 | \$14.00 | \$16.00 |  |
| \$50.00 | \$6.00 | \$8.00 | \$9.00  | \$11.00 | \$12.00 | \$14.00 | \$15.00 | \$17.00 |  |
| \$60.00 | \$7.00 | \$9.00 | \$10.00 | \$12.00 | \$13.00 | \$15.00 | \$16.00 | \$18.00 |  |

A cell is based on first column, top row data *in that row and column* ... must mix relative and absolute references



#### Series

## Another handy property of fill is that it can make a series based on constants

- \* Fill Sunday => Monday, Tuesday, Wed...
- \* Fill 22 Feb => 23 Feb, 24 Feb, 25 Feb, ...

### More generally

- \* Series fill will even count using a constant
- \* Counting by odd sizes: give 1st two items