Announcements

Project 3A assigned today

Data bases are collections of information; our study repeats a theme: Tell the computer the structure, and it can help you!

Some of us want to compute, but all of us want information ...

- Much of the archived information is in tables
- Data ba ses enha nce a pplications, e.g. Web
- Once you know how to create databases, you can use them to personal advantage
- Databases introduce interesting ideas

How much of your information can be in a table?

Before relational data bases (the kind we study) there were only "flat files"

- Struc tural information was diffic ult to express
- All processing of information was "special cased" -- custom programs were needed
- Information repeated; diffic ult to combine
- Changes in format of one file means all programs that ever process that file must be changed ... adding ZP codes
E.F. Codd of IBM invented relational data bases

Information is stored in ta bles

- Tables store information a bout entities -things or stuff ... keep entities of one kind
- Entities have characteristic scalled attributes
- Ta bles a re tuples (rows or rec ords) of attributes (c olumns or fields)
- Every row must be unique, identified by a key
- Relationships -- associations a mong the data values a re stored

Table structure = schema Table contents = instance

Tables have na mes, attributes, tuples

Example: Table

ID	Last	First	Hire	Addr
1	Davolino	Nancy	01 May 1992	507 20th Ave E
2	Fuller	Andrew	14 Aug 1992	908 W. Capital Way
3	Wooster	Berton	01 Apr 1993	722 Moss Bay Blidd
4	Peacock	Margaret	03 May 1993	4110 Old Redmond Rd
5	Buchanan	Steven	17 Oct 1994	13 Garrett Hill
6	Sullimani	Okan Example:		

ID number unique number(Key) Last text
First text person's last name

Hire date first day on job
Addr text street address

Not every a ssembly of ta bles is a good database -- repeating data is bad

- Replicated data candiffer in its different locations, e.g. multiple addresses can differ
- Inconsistent data is worse than no data
- Keep a single copy of any data, a nd if it is needed in multiple places, associate it with a key, and store key rather than the data

When looking for information, a single

 item might be the answer, but a table is more likely- "Who is ta king FIT100"? Ta ble of students
- "Whose mile run time $\leq 4: 00$?" Runner table
- "Who won 2003 Grammy for 'Best New Artist?" A ta ble conta ining only a single row
- "In what years has US won the World Cup?" Empty Table

Queries to a DB (set of ta bles) produces ta bles

There are five funda mental operations

 on tables to create tables:- Select -- pick rows from a table
- Project -- pick columns from a ta ble
- Union -- combine two tables w/like columns
- Difference -- remove one table from a nother
- Product -- create "all pairs" from two ta bles

Though not primitive "J oin" is usua lly inc luded

Select creates a table from the rows of a nother table meeting a criterion

Select from Exa mple On Hire < 1993

Erample : Table

ID	Last	First	Hire	Addr
1	Davolino	Nancy	01 May 1992	507 20th Ave E
2	Fuller	Andrew	14 Aug 1992	908 W. Capital Way
3	Wooster	Berton	01 Apr 1993	722 Moss Bay Blvd
4	Peacock	Margaret	03 May 1993	4110 Old Redmond Rd
5	Buchanan	Steven	17 Oct 1994	13 Garrett Hill
6	Sullimani	Okan	12 Dec 1994	Coventry House

Example : Table

ID	Last	First	Hire	Addr
1	Davolino	Nancy	01 May 1992	507 20th Ave E
2	Fuller	Andrew	14 Aug 1992	908 W. Capital Way

Project creates a table from the columns of a nother ta ble
 Project Last, First From Example

Example : Table

ID	Last	First	Hire	Addr	
1	Davolino	Nancy	01 May 1992	507 20th Ave E	
2	Fuller	Andrew	14 Aug 1992	908 W. Capital Way	
3	Wooster	Berton	01	Example : Table	
4	Peacock	Margaret	03	Last	
5	Buchanan	Steven	17	First	Dd
6	Sullimani	Okan	12	Fuller	Nancy

Union (written like addition) c ombines two tables with same attributes

- Politic a IUnits = Sta tes + Provinces

States: Table

Name	Capitol	Sight			
Washington O	Olympia	Mt. Rainier			
Oregon S	Salem	Crater Lake			
California S	Sacramento	Golden C \% PoliticalUnits: Table			
Provinces: Table			Name	Capitol	Sight
Name	Capitol	s	British Columbia	Victoria	Stanley Park
British Columbia	a Victoria	Stanle	Alberta	Edmonton	Banff
Alberta	Edmonton	Banff	Washington	Olympia	Mt. Rainier
			Oregon	Salem	Crater Lake
			California	Sacramento	Golden Gate

Difference (written like subtraction)

 removes 1 table's rows from a nother- Eastem = States - WestCoast

States : Table			WestCoast : Table		
Name	Capitol	Sight	Name	Capitol	Sight
Washington	Olympia	Mt. Rainier	Washington	Olympia	Mt. Rainier
Oregon	Salem	Crater Lake	Oregon	Salem	Crater Lake
California	Sacramento	Golden Gate	California	Sacramento	Golden Gate
Arizona	Phoenix	Grand Canyon			
Nevada	Carson City	Las Veqas			
	Eastern : Table				
		Name	Capitol		
		rizona	Phoenix	Grand O	yon
		evada	Carson City	Las Veg	

Product (written like multiplic ation)

 combines columns and pairs all rows Colors = Blues \mathbf{x} Reds

Column Rule: If A has x columns, B has y columns, $\mathrm{A} x \mathrm{~B}$ has $x+y$ columns
Row Rule: If A has m rows, B has n rows A x B has mn rows

There's divide, too, but forget it

J oin (written like a bow tie) combines rows (like \mathbf{x}) if common field matches

 Homes $=$ States $\triangleright \triangleleft$ Students| States : Table | | |
| :---: | :---: | :---: |
| State | Capitol | Sight |
| Washington | Olympia | Mt. Rainier |
| Oregon | Salem | Crater Lake |
| California | Sacramento | Golden Gate |
| Arizona | Phoenix | Grand Canyon |
| Nevada | Carson City | Las Vegas |

Students : Table

First	Last	State
John	Jones	Washington
Jennifer	Smith	California
Brian	Tims	Manitoba

Homes : Table

State	Capitol	Sight	First	Last
Washington	Olympia	Mt. Rainier	John	Jones
California	Sacramento	Golden Gate	Jennifer	Smith

The five DB Operations can create any

 table from a given set of tables- All modem database systems are built on these relational operations
- J oin is not primitive, but can be built from 5
- J oin, select and project are used most often
- The operations are not usually used directly, but a re used indirectly from other languages

SQL, the DB language we leam, is built on basic 5

