Introduction to Database Concepts

N

> Use XML to describe the metadata for a table of information,
and classify the uses of the tags as identification, affinity, or
collection

- Explain the differences between everyday tables and database
tables

» Explain how the concepts of entities and attributes are used to
design a database table

» Use the six database operations: Select, Project, Union,
Difference, Product, and Join

* Describe the differences between physical and logjcal
databases

© Express a query using Query By Example

Computers are useless. They only give answers.

~PABLO PICASSO

Now that we have all this useful information, it would be nice to do
something with it. (Actually, it can be emotionally fulfilling just to get
the information. This is usually only true, however, if you have the
social life of a kumquat.)

—UNIX PROGRAMMER’'S MANUAL

WE HAVE seen the benefits of using spreadsheets to organize lists
of information. By arranging similar information into columns and using
a separate row for each new list item, we can easily sort data, use formu-
las to summarize and compute values, get help from the computer to set
up series, and so forth. Spreadsheets are very powerful, but with data-
bases it’s possible to apply even greater degrees of organization and
receive even more help from the computer.

The key idea is to supply metadata describing the properties of the
collected information. Recall that metadata is simply information
describing (the properties of) other information. We applied the idea of
specifying metadata in Chapter 8, when we used tags—the metadata—to
describe the content of the Oxford English Dictionary, enabling the com-
puter to help us search for words and definitions. Some databases use
tags for metadata, others use different kinds of metadata, but the same
principles apply: Knowing the structure and properties of the data, the
computer can help us retrieve, organize, and manage it.

In this chapter we distinguish between the everyday concept of a
table and a relational database table. Next, we explain how to set up the
metadata for collections of information to create a database. The princi-
ples are straightforward and intuitive. We will make the metadata tangi-
ble by using a notation called XML. After introducing basic table
concepts, we present the five fundamental operations on tables and the
Join operation. The concepts of physical database and logical database
are connected by the concept of queries, and we illustrate how to build
a user’s logical view from physical tables. Finally, the convenience of

Query By Example is illustrated using simple examples.

444

Chapter 16 A Table with a View: Introduction to Database Concepts

When we think of databases, we often think of tables of information. For exam-
ple, your iTunes or similar application records the title, artist, running time, and
so on in addition to the actual MP3 data (the music). Your favorite song is a row
in that table. Another example is your state’s database of automobile registrations
recording the owner’s name and address, the vehicle identification number (VIN),
the license plate number, and such. Your car is a row in the registration database
table. And as a last example, the U.S. Central Intelligence Agency (CIA) keeps an
interesting database called the World Factbook; see https://www.cia.gov/
library/publications/the-world-factbook/index.html. The demo-
graphic table records the country name, population, life expectancy, and so on.
The U.S. is a row in the demography table.

To see the difference between these database tables and other forms of tables, such
as spreadsheets and HTML tables, consider the row for Canada in the ClAs demo-
graphic database. This row is displayed as

Canada 32805041 161 6 804

in a table with column headings such as Country, Population, and Birthrate. In the
file it is represented as

<demogData>
<country>Canada</country>
<population>32805041</population>
<fertility>1l.61</fertility>
<infant>5</infant>
<lifeExpct>80.1</lifeExpct>
</demogData>

where the tags identify the population, fertility or birthrate, infant mortality (per
1,000 live births), and life expectancy. That is, we are shown a row of data as it
appears in any other table, but inside the computer it has a tag identifying each of
the data fields.

How does this data appear in other table forms? In a spreadsheet, the following is
the row for Canada.

36 Camercon 16988132 4.47 65 50,89
ETE conada 32805041 1.61 5 80.1
38 Cape Verde 418224 3.48 48 70.4%5

The entries for Canada are the same, but the software knows the values only by
position, not by their meaning. So, if a cell is inserted at the beginning, causing all
of the data to shift right one position,

36 Carneroon 16988132 4,47 65 50.89

/ Canada 32805041 1.81 S 80.1
38 Cape Verde 418224 3.48 48 70.45

XML: A Language for Metadaté Tags 445

the identity of the information is lost. Spreadsheets rely on position to keep the
integrity of their data; the information is not known by its <country> tag, but
rather as A37.

HTML tables are possibly even worse. The usual Web page presentation of the
data for Canada is represented in HTML as

<tr>
<td>Canada</td>
<td>32805041</td>
<td>1.61</td>
<td>5</td>
<td>80.1</td>
</tr>

where we recall that <tr> is a table row tag and <td> is a table data tag. These
tags simply identify Canada’ data as table entries with no unique identity at all;
that is, the same kind of <td> tags surround all of the different forms of data.
HTML is concerned only with how to display the data, not with its meaning.

The Database’s Advantage

The metadata is the key advantage of databases over other systems recording data
as tables. Here’s why. Suppose we want to know the life expectancy of Canadians.
Database software can search for the <country> tag surrounding Canada. When
its found, the <country> tag will be one of several tags surrounded by
<demogData> tags. These constitute the entry for Canada in the database. The
software can then look for the <1ifeExpct> tag among those tags and report the
data that they surround as the data for Canada. The computer knew which data to
return based on the availability of the metadata.

The tags for the CIA database just discussed fulfill two of the most important roles
in defining metadata.

> Identify the type of data: Each different type of value is given a unique
tag.

> Define the affinity of the data: Tags enclose all data that is logically
related.

The <country>, <population>, and similar tags have the role of identification
because they label the content. The <demogData> tag has the role of implement-
ing affinity because it keeps an entry’s data together. There are other properties of
data that metadata must record, as you will see throughout this chapter, but these
are perhaps the most fundamental.

;:XML: A Language for Metadata Tags

To emphasize the importance of metadata and to prepare for our own applications
of database technology, let’s take a moment to discuss the basics of XML. XML
stands for the Extensible Markup Language, and like the Hypertext Markup

T

446 Chapter 16 A Table with a View: Introduction to Database Concepts

Language (HTML), it is basically a tagging scheme, making it rather intuitive. The
tagging scheme used for the Oxford English Dictionary (OED) in Chapter 8 was a
precursor to XML, and the demographic data of the last section was written in
XML.

What makes XML easy and intuitive is that there are no standard tags to learn. We
think up the tags we need! Computer scientists call this a self-describing language,
because whatever we create becomes the language (tags) to structure the data.
There are a couple of rules—for example, always match tags—but basically any-
thing goes. Perhaps XML is the world’ easiest-to-learn “foreign” language.

The same people who coordinate the Web—the World Wide Web Consortium
(W3C)—developed XML. As a result, it works very well with browsers and other
Web-based applications. So, it comes as no surprise that just as HTML must be
written with a text editor rather than a word processor to avoid unintentionally
including the word processor’s tags, we must also write XML in a simple text edi-
tor for the same reason. Use the same editor that you used in Chapter 4 to prac-
tice writing Web pages: for Mac users that might be TextEdit or TextWrangler; for
Windows users it might be Notepad or Notepad++.

fl"t TIP | use A Text Editor for XML. Like HTML, XML should be written using a text
editor like Notepad++ or TextWrangler rather than a word processor like Word or
Word Perfect. Text editors give you only the text you see, but word processors
include their own tags and other information that could confuse XML.

An Example from Tahiti

Lets use XML to define tags to specify the metadata for a small data collection.
Given the following size data (area in km?) for Tahiti and its neighboring islands
in the Windward Islands archipelago of the South Pacific,

Tahiti 1048
Moorea 130
Maiao 9.5
Mehetia 2.3
Tetiaroa 12.8

we want to add the metadata, that is, identify which data is an island name and
which is the area. As usual, the tag and its companion closing tag surround the
data. We choose <iName> and <area> as the tags and write:

<iName>Tahiti</iName> <area>1048</area>
<iName>Moorea</iName> <area>130</area>
<iName>Maiao</iName> <area>9.5</area>

<iName>Mehetia</iName> <area>2.3</area>
<iName>Tetiaroa</iName> <area>12.8</area>

These tags are used in the identification role. Notice that we chose <iName> rather
than, say, <island name>. This is because XML tag names cannot contain spaces.
But because both uppercase and lowercase are allowed—XML is case sensitive—

fitTIp

XML: A Language for Metadata Tags 447

we capitalize the “N” to make the tag more readable. All XML rules are shown
later in this section in Table 16.1.

Though we have labeled each item with a tag describing what it is, we’re not done
describing the data. We need tags describing what sort of thing the name specifies
and the area measures. That’s an island, of course. So we enclose each entry with
an <island> tag, as in

<island><iName>Tahiti</iName> <area>1048</area></island>
<island><iName>Moorea</iName> <area>130</area></island>
<island><iName>Maiao</iName> <area>9.5</area></island>
<island><iName>Mehetia</iName> <area>2.3</area></island>
<island><iName>Tetiaroa</iName> <area>12.8</area></island>

The <island> tag serves in the affinity role to keep the two facts together; that is,
Tahiti is grouped with its area and it is separated from Moorea and its area.

We're nearly done. The islands are not just randomly dispersed around the ocean.
They are part of an archipelago, the proper name for a group of islands. So, we
naturally invent one more tag, <archipelago>, and surround all of the islands
with it. The result is shown in Figure 16.1.

<?xml version = "1.0" encoding="I1S0-8859-1" ?>
<archipelago>

<island><iName>Tahiti</iName> <area>1048</area></island>
<island><iName>Moorea</iName> <area>130</area></island>
<island><iName>Maiao</iName> <area>9.5</area></island>

<island><iName>Mehetia</iName> <area>2.3</area></island>
<island><iName>Tetiaroa</iName> <area>12.8</area></island>
</archipelago>

Figure 16.1 XML file encoding data for the Windward islands database. The first
line states that the file contains XML tags.

Notice that in Figure 16.1 an additional line has been added at the beginning of
the file. This line, which uses the unusual form of associating question marks (?)
within the brackets, identifies the file as containing XML data representations. (It
also states that the file’s characters are the standard ASCII set used in the U.S.; see
Chapter 8.) This first line is required and must be the first line of any XML file. By
identifying the file as XML, hundreds of software applications can understand
what it contains. In this way the effort to tag all of the information can be repaid
by using the data with those applications.

Start Off Right with XML. XML files must be identified as such, and so they
are required to begin with the text

<?xml version = "1.0" encoding="IS0-8859-1" 2>

(or other encoding) as their first line and without leading spaces. The file should be
ASCIl text, and the file extension should be .xml.

448

Chapter 16 A Table with a View: Introduction to Database Concepts

H
i

_ % Write an XML metadata coding for the following collection of data
from the Galdpagos archipelago.

Island Area Elevation
Isabela 4588 1707
Fernandina 642 1494
Tower 14 76

Santa Cruz 986 846

For the items of the same type as the data from the Windward archipelago, use
the same tags; for the elevation, the highest point on the island, think up a new
tag.

Answer: Using a tag name different from <elev> for the elevation is possible,
but otherwise this is the one solution apart from spacing

<archipelago>
<island> <iName>Isabela</iName>

<area>4588</area><elev>1707</elev> </island>

<island> <iName>Fernandina</iName>
<area>642</area> <elev>1494</elev> </island>

<island> <iName>Tower</iName>
<area>l4</area> <elev>76</elev> </island>

<island> <iName>Santa Cruz</iName>
<area>986</area> <elev>846</elev> </island>

</archipelago>

Given the XML encoding of two archipelagos—the Windward Islands and the
Galapagos Islands—it seems reasonable to combine the encodings.

To create a database of the two archipelagos, we place them in a file, one after the
other. This might seem odd because the Windward Islands have only two data
values—name and area—while the Galapagos Islands have three—name, area,
and elevation. But this is okay. Both archipelago encodings use the same tags for
the common information, which is the key issue to consider when combining
them. Extra data is allowed and, in fact, we might want to gather the elevation
data for the Windward Islands.

With the two archipelagos combined into one database, we want to include the
name of each to tell them apart easily. Of course, this means adding another tag
for the name. We could use <name>, which is different from the <iName> tag used
before. But in the same way that we added “i” to remind ourselves that it is an
island name, it is probably wise to use the same idea to create a more specific tag
name. Let’s adopt the tag <a_name>. Notice the use of underscore, which is an
allowed punctuation symbol for XML. We will place the name inside the

<archipelago> tag, since it is data about the archipelago.

XML: A Language for Metadata Tags 449

Finally, we have two archipelagos and we need to group them together by sur-
rounding them with tags; these tags will serve as the root element of our XML
database. A root element is the tag that encloses all of the content of the XML
file. In Figure 16.1 the <archipelago> tag was the root element, but now with
two archipelagos in the file, we need a new tag to enclose them. They are both
geographic features of our planet, so we will use <geo_feature> as the tag that
surrounds both archipelagos. The final result of our revisions is shown in Figure
16.2.

Notice that the text in the file has been indented to make it more readable. Like
HTML, XML doesn'’t care about white space—spaces, tabs, and new lines—when
they are between tags. This allows us to format XML files to simplify working with
them, but the indenting is only for our use.

Attributes in XML

Recall that HTML tags can have attributes to give additional information, such as
bgcolor in <body bgcolor="blue">. Our invented tags of XML can also have

<?xml version = "1.0"
encoding="IS0-8859-1" ?>
<geo_feature>
<archipelago>
<a_hame>Windward Islands
</a_name>
<island>
<iName>Tahiti</iName>
<area>1048</area>
</island>
<island>
<iName>Moorea</iName>
<area>130</area>
</island>
<island>
<iName>Maiao</iName>
<area>9.5</area>
</island>
<island>

<iName>Mehetia</iName>

<area>2.3</area>
</island>
<island>

<iName>Tetiaroa</iName>

<area>12.8</area>
</island>
</archipelago>

<archipelago>

<a_name>Galapagos Islands

</a_name>

<island>
<iName>Isabella</iName>
<area>4588</area>
<elevation>1707</elevation>

</island>

<island>
<iName>Fernandina</iName>
<area>642</area>
<elevation>1494</elevation>

</island>

<island>
<iName>Tower</iName>
<area>l4</area>
<elevation>76</elevation>

</island>

<island>
<iName>Santa Cruz</iName>
<area>986</area>
<elevation>846</elevation>

</island>

</archipelago>
</geo_feature>

Figure 16.2 XML file for the Geographic Features database. XML ignores white space,

so the text in the file has been indented for easier reading.

450

Chapter 16 A Table with a View: Introduction to Database Concepts

attributes. They have a similar form, and must always be set inside the simple

quotation marks—that is, the straight quotes, not the curly “smart” quotes. Tag
attribute values can be enclosed either in paired single or double quotes. If the
content of the tag attribute requires quotes or an apostrophe (the single quote),
then enclose the attribute value in the other form of quotes. So, we might have

<entry warnIfNone="Ain’'t there!">The user entered this
data.</entry>

for one instance, and

<entry warnIfNone='I say, "Please Enter"'>The data is
from a user.</entry>

for another.

Understanding how to write tag attributes is easy enough. Even the rules for using
quotes are straightforward. But, we want to use them wisely, which requires some
thought.

The best advice about attributes is to use them for additional metadata, not for
actual content. So, although we could have written

<archipelago name="Galapagos">

we chose not to because the name of an archipelago is content. A better use is to
give an alternate form of the data, as in

<a_name accents="Ga1ápagos">Ga1apagos</a_name>

which records that the second “a” in Galapagos is accented. The name of the
islands is still given using a normal tag, but specifying accent marks separately

" simplifies searching and display options.

Effective Design with XML Tags

XML is a very flexible way to encode metadata. As we have described the archipel-
agos, we have used a few basic guidelines to decide how to use the tags. To
emphasize these rules, let’s review our thinking in creating metadata tags for the
archipelago data, encapsulating it into three encoding rules.

Identification Rule: Label Data with Tags Consistently. You can choose whatever
tag names you wish to name data, but once you've decided on a tag for a particular kind
of data, you must always surround it with that tag.

Notice that one of the advantages of enclosing data with tags is that it keeps the
data together. For example, the island of Santa Cruz in the Galapagos is a two-
word name, but we don't have to treat it any differently than the one-word island
names since the tags keep the two words together.

You may think that because we can choose our own tag names, it might be diffi-
cult to combine databases written by two different people—without planning
ahead, they will probably choose different tags. Luckily, such differences are easily
resolved: Because the tags are used consistently, it is possible to edit a file using
Find/Replace to change the tag names. (There are other, more sophisticated ways to

XML: A Language for Metadata Tags 451

make them consistent, too.) For example, if your friend, who gathered the archi-
pelago data for the Northern Hemisphere, used <Name> for the archipelago name
rather than <a_name>, use Find to locate <Name> and Replace to substitute
<a_name>. Of course, searching for Name alone and replacing it with a_name does
not work since it would match and ruin the <iName> tags. (If such cases do get in
the way, use the Placeholder Technique described in Chapter 2.)

Affinity Rule: Group Related Data. Enclose in a pair of tags all tagged data referring
to the same entity. Grouping it keeps it all together, but the idea is much more fundamen-
tal: Grouping makes an association of the tagged data items as being related to each
other, properties of the same thing.

We applied this rule when we grouped the island name and area data inside
<island> tags. We did this because both items referred to the same thing, the
island. This is an important association, because the area data is not just area data
about some random place on the earth; it is the area data for a specific place that
is named Tahiti. This is an extremely important result from the simple act of
enclosing data in tags.

When we added elevation data as an additional feature of islands, we included it
inside the <island> tags for the same reason. As the elevation data shows, it is
not necessary for every instance of an object to have data for the same set of
characteristics.

Collection Rule: Group Related Instances. When you have several instances of the
same kind of data, enclose them in tags; again, it keeps them together and implies that
they are related by being instances of the same type.

When we had a group of five islands from the same area of the ocean, we grouped
them inside an <archipelago> tag, and when we had a group of two archipela-
gos, we grouped them inside a <geo_feature> tag. We also added the names to
the archipelagos using <a_name>, because as 2 collection they also have this addi-
tional property that we want to record.)

~ Notice that the Affinity Rule and Collection Rule are different. The Affinity Rule
groups together the data for a single thing—an island. Typically, in this case the
tags of the data values will all be different reflecting the different properties of the
thing. The Collection Rule groups together the data of several instances of the
same thing. Typically, in this case the tags—in our case <islands>—will be the
same. The first association is among properties of an object, the second is among
the objects themselves, which we also call entities. Notice that being grouped by
the Collection Rule doesn't preclude being an object; the islands grouped together
form a larger object, the archipelago, and so it has properties, too, such as a name.

The XML Tree

The rules for producing XML encodings of information produce hierarchical
descriptions that can be thought of as trees. (We interpreted hierarchies as trees in
Chapter 5.) See Figure 16.3 for the tree structure of the encoding of Figure 16.2.
The hierarchy is a consequence of how the tags enclose one another and the data.

452 Chapter 16 A Table with a View: Introduction to Database Concepts

a_name - Windward islands

archipelago

geo_feature |

“archipelago

Figure 16.3 The XML displayed as a tree. The encoding from Figure 16.2 is shown
with the root element (geo_feature) to the left and the leaves (content) shown to
the right.

Table 16.1 Rules for writing XML.

Required first line <?xml version="1.0" encoding="IS0-8859-1"?> must appear on the first line,
starting in the first position.

First tag The first tag encountered is the root element, and it must enclose all of the file's
content; it appears on the second or possibly third line.

Closing tags All tags must be closed.

Element naming Observe these rules:
s Names can contain letters, numbers, and underscore characters.
e Names must not start with a number or punctuation character.
e Names must not start with the letters xml {or XML, or Xml, etc.).
e Names cannot contain spaces.

Case sensitivity Tags and attributes are case sensitive.

Proper nesting All tags must be well-nested.

Attribute quoting Al attribute values must be quoted; paired single quotes (apostrophes) or paired double
quotes are okay; use “dumb” quotes only; choose ‘opposite’ quotes to enclose quoted
values.

White space White space is preserved and converted to a single space.

Comments XML comments have the form <!—-- This is a comment. -—->.

fitsyTE

Tables and Entities 453

Tables and Entities

You have seen how you can record metadata about a collection of data values
using XML tags. For the moment, let’s set aside the topics of tagging and XML,
and focus directly on table database systems generally. We want you to understand
the concepts of database organization and the desirable properties embodied in
the metadata, not simply the way to encode that structure with tags. We'll return
to tagging later in the next chapter, but for now, think of tables pure and simple.

The kind of database approach we will discuss is known as a relational database.
Relational databases describe the relationships among the different kinds of
data—the sort of ideas embodied in Affinity and Collection Rules—allowing the
software to answer queries about them. Although every relational database can be
described by XML, it is not true that anything described by XML is a relational
database. It may seem that relational databases are limited, but their power is
enormous.

A Bright Idea. Though many people contributed to the creation of relational |
databases, E. F. Codd of IBM is widely credited with the original concept. He

received the Association of Computing Machinery’s Turing Award, the field's Nobel |
Prize, for the idea. |

Entities

What do we want in database tables? Entities. “Entity” is about as vague as “thing”
and “stuff,” but the inventors of databases didn't want to limit the kinds of infor-
mation that can be stored. An entity is anything that can be identified by a fixed
number of its characteristics, called attributes; the attributes have names and val-
ues, and the values are the data that is stored in the table. (Unfortunately, attrib-
utes is an overused word in computing; in relational databases, think of an
attribute as a “column of a table,” where the “attribute names” are the column
headings and the “attribute values” are the entries. We use the term tag attributes
when we mean the attributes of XML.)

To relate entities and attributes to the metadata discussion earlier in this chapter,
think of the attribute’s name as the tag used in the Identity role, and the attribute
values as the content enclosed in the tags. An entity is a group of attributes col-
lected together by a tag used in the Affinity role. When describing affinity, we
noted that the tagged data that we were grouping together all applied to one
object, which was why it made sense to enclose it in tags. That object is the
entity—the thing that the data applies to. Think of the tag used in affinity as the
entity’s name, and the tags that we allow within it as its attributes. So, an “island”
is an entity, and its attributes include “name,” “area,” and “elevation”; see Figure
16.4. An “archipelago” is also an entity.

454

Chapter 16 A Table with a View: Introduction to Database Concepts

fitBYTE

‘ Island

Name | Area | Elevation
Isabela 4588 1707
Femandina o4z | 1404
Tower IV 7
CSantaCruz | 986 846

Figure 16.4 A table instance for the
island entity.

So, an entity defines a table. The name of the entity is the name of the table, and
each of its possible attributes is assigned a column with the column heading being
the attribute name. The values in the columns are the attributes’ values, and the
rows are the entity instances. We say entity instances for a row because a specific
set of values for the attributes of an entity—that is, the content of the row—define
one particular object, an instance of the entity. So, “name” and “area” are attributes
of “island” generally, but “Tahiti” and “1048” define a specific island; a row with
those values is an instance of the “island” entity. Any table containing specific
rows is said to be a table instance.

In addition to having a name, attributes also have a data type, such as number,
text, image, and so on. (We haven't been concerned about data types so far.) The
data type defines the form of the information that can be stored in a field. By
specifying the data type, database software can prevent us from accidentally stor-
ing bad information in a table. To connect the data type to the tagging discussed
earlier, think of the type as a tag attribute, as in <name type="text"> or <area
type="number">, though database software uses other forms of metadata to
record the data type.

For the Record. Because databases are so important and long-studied, the con-
cepts are known by several terms. The technical term for a row is a tuple {short u)
from words like quintuple, sextuple, and septuple. Rows are often called records, a
holdover from computing’s punch-card days. Attributes are also known as fields and
columns; an attribute’s data type is sometimes referred to as its format. Tables are
technically known as relations.

Properties of Entities

One curious property of a relational database table is that it can be empty. That is,
the table has no rows. (Visualize the idea by deleting the last four rows of the
table in Figure 16.4.) It seems odd, but it makes sense. Once we agree that an
entity is anything defined by a specific set of attributes, then in principle a table
exists with a name and column headings. When we specify entity instances, we’'ll
have rows. So, among the instances of any table is the “empty instance.”

Tables and Entities 455

Instances Are Unordered. Each distinct table is a different table instance.
Two table instances will have a different set of rows. And, tables with the same
rows, but reordered—that is, the same rows are listed in different sequence, say
one sorted and the other unsorted—are the same table instance. Thus, the order
of the rows doesn’t matter in databases. We need to list them in some order, of
course, but any order will do.

The attributes (columns) are also considered to be unordered, though we must list
them in some order. Since the attributes have a name—think of the column head-
ing or the tag—they do not have to be tracked by position.

Notice that the columns are unordered and the rows are unordered, but that
doesn’t mean that data in the table can go anywhere. Columns stay as columns,
because they embody a kind of data being stored, and the items in a row stay as a
row, because they are descriptive of an individual entity. The freedom to move the
data is limited to exchanging entire rows or exchanging entire columns.

Uniqueness. There are few limits on what an entity can be. Things that can be
identified or distinguished from each other based on a fixed set of attributes qual-
ify as entities, which covers almost everything. Amoebas are not entities, because
they have no characteristics that allow us to tell them apart. (Perhaps amoebas can
tell each other apart, and if we could figure out how, then the characteristics on
which they differ could be their attributes, allowing them to become entities.) Of
course, one-celled animals are entities.

Because entities can be distinguished by their attributes, they are unique.
Accordingly, in a database table no two rows can be the same. Unique instances is
usually what we intend when we set up a database. For example, the database
containing information about registered students at a college intends for each
row—corresponding to a student—to be unique since the students are. When we
set up the database, we ensure that we store information that uniquely identifies
each student—such as name, birth date, parents’ names, and permanent address.

In cases where the entities are unique but it is difficult to process the information,
we might select an alternate encoding. For example, killer whales can be distin-
guished by the arrangement of their black-and-white markings. Even though
images can be stored in a database, it is difficult to compare two images to deter-
mine if they show the same whale. So, we assign names to the killer whales,
which are easy to manipulate, letting a human do the recognition and assign the
name.

Notice that the two rows can have the same value for some attributes, just not all
attributes.

Keys. The fact that no two rows in a database table are identical motivates us to
ask which attributes distinguish them. In most cases, there will be several possi-
bilities. Single attributes might be sufficient, like island name, or pairs of attrib-
utes like island name and archipelago name may be needed if certain island

456

Chapter 16 A Table with a View: Introduction to Database Concepts

names, like Santa Maria, are common. Or we may have to consider three or more
attributes taken together to ensure uniqueness. Any set of attributes for which all
entities are different is called a candidate key. Because database tables usually
have several candidate keys, we choose one and call it the primary key. The
primary key is the one that the database system will use to decide uniqueness.

Notice that candidate keys qualify only if they distinguish among all entities for-
ever, not just those that are in the table at the moment, that is, the given instance.
For example, all currently registered college students might have different names
(first, middle, and last taken together), making the name attribute unique for the
current class. But, as we know, there are many people with identical names, and
so that triple is not an actual candidate key.

If no combination of attributes qualifies as a candidate key, then a unique 1D must
be assigned to each entity. That’s why your school issues students IDs: Some other
student might match you on all of the attributes that the school records in its
database, but because the school doesn’t want to worry about the possibility of
two distinct students matching on its key, it issues an ID number to guarantee that
one attribute distinguishes each student.

Atomic Data. In addition to requiring a description of each attribute’ type of
data—for example, number, text, or date—databases also treat the information as
atomic, that is, not decomposable into any smaller parts. So, for example, an
address value

1234 Sesame Street

is treated in a database table as a single sequence of ASCII characters; the street
number and the street name cannot be separated. This is why forms—both paper
and Web—have separate fields for street, city, state, and postal code: Most uses of
address information must manipulate the city, state, and postal code information
independently, which means the data must be assigned to separate fields.

The “only atomic data” rule is usually relaxed for certain types of data, such as
dates, time, and currency. Strictly speaking, a date value 01/01/1970 must be
treated as a single unity; any use of the date that refers to the month alone has to
store the date as three attributes: day, month, and year. But database software usu-
ally bends the rules, allowing us to specify the format of the data attribute, say
dd/mm/yyyy, which allows the program to understand how the field decomposes.
This format saves us the trouble of manipulating three attributes.

Database Schemes

Though tags may be a precise way to specify the structure of a table, it is a cum-
bersome way to define a table. Accordingly, database systems specify a table as a
database scheme or database schema. The scheme is a collection of table defini-
tions that gives the name of the table, lists the attributes and their data types, and
identifies the primary key. Each database system has specific requirements for how
a scheme is presented, so there are no universal rules. We use an informal

Tables and Entities 457

approach in which the attributes are given by their name, a data type, and a com-
ment describing the meaning of the field. Figure 16.5 shows a database scheme
for the Island table.

Island
iName Text Island Name
area Number Area in square kilometers
elevation Number Highest point on the island

Primary Key: iName

Figure 16.5 Database table definition for an Island table.

XML Trees and Entities

As mentioned earlier, relational database tables and XML trees are not the same. A
full explanation of the differences is for database experts, but basically relational
databases are more restrictive than XML trees; the limits make them more power-
ful and allow them to do more for us, as you'll soon see. For us, the main differ-
ence concerns the Collection Rule: When entity instances are grouped, all entities
within the tag must have the same structure, because that structure defines the
attributes that make up a row.

For example, the Island table for the Galapagos in Figure 16.4, which is a legal
relational database table, can be encoded in XML as shown in the answer to the
Try It! on page 448. So, the relational formulation and the XML formulation are
the same. But, when we added the <a_name> tags inside of the <archipelago>
tags, we violated the relational requirement that all entities have the same struc-
ture: The <a_name> was not an <island> entity. Including the <a_name> tag
made sense for XML, but not for the relational model. So, they are related but not
identical.

Database Tables Recap

Summarizing the important points of the last few sections, tables in databases are
not simply an arrangement of text, but rather they have a structure that is speci-
fied by metadata. The structure of a database table is separate from its content. A
table structures a set of entities—things that we can tell apart by their attributes—
by naming the attributes and giving their data types. The entities of the table are
represented as rows. We understand that rows and columns are unordered in
databases, though when they are listed they have to be listed in some order. Tables
and fields should have names that describe their contents, the fields must be
atomic (i.e., indivisible), and one or more attributes define the primary key (i.e.,
field(s) with the property of having a different value for every row in any table
instance ever).

Chapter 16 A Table with a View: Introduction to Database Concepts

Operations on Tables

A database is a collection of database tables. The main use of a database is to look
up information. Users specify what they want to know and the database software
finds it. For example, imagine a database containing Olympic records. There
might be a table of participants for each Olympics, including attributes of name,
country, and event; there might be a table of the medal winners for each
Olympics, including attributes for the medal, the winners name, the winners
country, and perhaps the score, distance, time, or other measure of the achieve-
ment. The database has many tables, but if we want to know how many marathon
medalists have come from African countries, there is no table to look in—the
table of medalists probably includes all winners in all sports, not just marathon
winners from African countries. The data is in the database, but it’s not stored in a
single table where we, or the computer, can look it up. What we need to do is
describe the information we want in such a way that the computer can figure out
how to find it for us.

Database operations allow us to ask questions of a database in a way that lets the
software find the answer for us. For example, we will ask for the number of
African marathon winners by asking:

Put together the medalists for all of the Olympic Games (the operation will be called
union), find the rows of medalists who won in the marathon (the operation will be called
select), and pick out those who come from African countries (the operation will be called
join). Count the resulting rows, which is the answer we want.

This example illustrates two important points. First, we can perform operations on
tables to produce tables. Its analogous to familiar operations on numbers:
Operations like addition combine two numbers and produce another number;
operations like union combine two tables and produce another table. Second, the
questions we ask of a database are answered with a whole table. If the question has
a single answer—who won the marathon in 2000?—then the table instance
answering the question will have only a single row. Generally there will be several
answers forming the table. Of course, if there is no answer, the table will be empty.

In this section we illustrate the idea of combining tables to produce new tables.
For this example, we imagine a table of the countries of the world as might be
used by a travel agency. Its structure and sample entries are shown in Figure 16.6.
Using that table, Nations, we'll investigate the five fundamental operations that
can be performed on tables: Select, Project, Union, Difference, and
Product.

Select Operation

The Select operation takes rows from one table to create a new table. Generally
we specify the select operation by giving the (single) table from which rows are
to be selected and the test for selection. We use the syntax:

select Test From Table

QOperations on Tables 459

Nations

Name text Common rather than official name

Domain text Internet top-level domain name

Capital text Nation’s capital

Latitude number Approx. latitude of capital

N_S Boolean Latitude is N(orth) or S(outh)

Longitude number Approx. longitude of capital

EW Boolean Longitude is E(ast) or W(est)

Interest text A short description of the country

Primary Key: Name

Name Dom Capital Lat NS Lon EW Interest
Ireland IE Dublin 52 N 7 W History
Israel IR Jerusalem 32 N 35 E History
Italy IT Rome 42 N 12 E Art
Jamaica JM Kingston i8 N 77 W Beach
Japan JP Tokyo 35 N 143 E Kabuki

Figure 16.6 The Nations table definition and sample entries.

The Test is to be applied to each row of the given table to decide if it should be
included in the new result table. The Test is a short formula that tests attribute
values. It is written using attribute names, constants like numbers or letter strings,
and the relational operators <, <, #, =, 2, >. The relational operators test
whether the attribute value has a particular relationship, for example, Interest
= 'Beach’ or Latitude < 45. If the Test is true, the row is included in the new
table; otherwise, it is ignored. Notice that the information used to create the new
table is a copy, so the original table is not changed by select (or any of the other
table-building operations discussed here).

To use the Nations table to create a table of countries with beaches, we write a
select command to remove all rows for countries that have Beach as their
Interest attribute. The operation is

Select Interest = 'Beach' From Nations

This gives us a new table, shown in part in Figure 16.7. Notice that the informa-
tion in the last column is constant because the Test required the word “Beach” for
that field for all selected rows.

The Test can be more than a test of a single value. For example, we can use the
logical operations AND and OR in the way they were used to search in Chapters 5
and 6. So, for example, to find countries whose capitals are at least 60" north lati-
tude, we write

Select Latitude 2 60 AND N S = 'N' From Nations

which should produce a four-row table created from the Nations tables rows for
Greenland, Iceland, Norway, and Finland.

Chapter 16 A Table with a View: Introduction to Database Concepts

Name Dom Capital Lat NS Lon EW Interest
Australia AU Canberra 37 S 148 E Beach
Bahamas BS Nassau 25 N 78 W Beach
Barbados BB Bridgetown 13 N 59 W Beach
Belize BZ Belmopan 17 N 89 W Beach
Bermuda BM Hamilton 32 N 64 W Beach

Figure 16.7 Part of the table created by selecting countries with a Test for
Interest equal to Beach.

Project Operation

If we can pick out rows of a table (using select), we should be able to pick out
columns too. Project (pronounced pro-JECT) is the operation that builds a new
table from the columns of an existing table. We only need to specify the name of a
table and the columns (field names) from it to be included in the new table. The
syntax is

Project Field List From Table

For example, to create a new table from the Nations table without the capital
and position information—that is, to keep the other three columns—write

Project Name, Domain, Interest From Nations

The new table will have as many rows as the Nation table, but just three
columns. Figure 16.8 shows part of that table.

Name Dom Word
Nauru " NR . Beach
Nepal NP Mountains
Netherlands NL Canals
New Caledonia NC Beach
New Zealand - . NZ Adventure

Figure 16.8 Sample entries for a Project
operation on Nations.

project does not always result in a table with the same number of rows as the
original table. When the new table includes a key from the old table (e.g., Name),
the key makes each row distinct, so the new table will include fields from all rows
of the original table. But if some of the new table’s rows are the same—which can't
happen if key columns are included, but can if there is no key among the chosen
columns—they will be merged together into a single row. The rows have to be
merged because of the rule that the rows of any table must always be distinct. If
rows in one table are merged, the two tables will, of course, have different num-
bers of rows. So, for example, to list the Interest descriptions that travel agents

Operations on Tables 461

use to summarize countries, we create a new table of only the last column of
Nations.

Project Interest From Nations

This produces a one-column table with a row for each descriptive word: Beach
appears once, Mountains appears once, and so on. Thus the table has as many
rows as unique words, and because of merging, it does not have as many rows as
Nations.

We often use Select and Project operations together to “trim” base tables to
keep only some of the rows and some of the columns. To illustrate, we define a
table of the countries with northern capitals, called Northern, and define it with
the command

At600rAbove = (Select Latitude = 60 AND N S = 'N' From Nations)

which is the table we created earlier. To throw away everything except the name,
domain, and latitude to produce Northern, we write

Northern = (Project Name, Domain, Latitude From At600rAbove)

as shown in Figure 16.9.

Name Dom Lat
Finland FI 61
Greenland GL 72
Iceland IS 65
Norway NO 60

Figure 16.9 Northern, the table of
countries with northern capitals.

Another way to achieve the same result is to combine the two operations:

Project Name, Domain, Latitude From
(Select Latitude 2 60 AND N_S = 'N' From Nations)

First a temporary table is created with the four countries, just as before. Then the
desired columns are selected. It might be a slightly more efficient solution if we
don't need the At600rabove table for any other purpose, but generally either
solution is fine.

Union Operation

Besides picking out rows and columns of a table, another operation on tables is to
combine two tables. This only makes sense if they have the same set of attributes,
of course. The operation is known as Union, and is written as though it were
addition:

Tablel + Table2

462

Chapter 16 A Table with a View: Introduction to Database Concepts

The plus sign (+) can be read “combined with.” So, if the table of countries with
capitals at least 45° south latitude are named At450rBelow with the command

At450rBelow = (Select Latitude = 45 AND N_S = 'S' From Nations)

then we can define places with their capitals closest to the poles using the union
operation. Call the result ExtremeGovt and define it by

ExtremeGovt = At600rAbove + At450rBelow

The result is shown in Figure 16.10. This table could also have been created with
a complex Select command.

Name Dom Capital Lat NS Lon EW Interest
Falkland Is FK Stanley 51 S 58 \Y Nature
Finland FI Helsinki 61 N 26 E Nature
Greenland GL Nuuk 72 N 40 W Nature
Iceland IS Reykjavik 65 N 18 W Geysers
Norway NO Oslo 60 N 10 E Vikings

Figure 16.10 The ExtremeGovt table created with Union.

Union can be used to combine separate tables, say, Nations with
Canada_Provinces. (Canada_Provinces gives the same data about the
provinces as Nations does about countries, except the Domain field is ca for all
rows.) For example, had the At600rAbove table been defined by

Select Latitude = 60 AND N_S = 'N°'
From (Nations + Canada_Provinces)

then the Yukon would be included because its capital, Whitehorse, is north of
60°.

Difference Operation

The opposite of combining two tables with Union is to remove from one table the
rows also listed in a second table. The operation is known as Difference and it
is written with the syntax

Tablel — Table2

The operation can be read, “remove from Tablel any rows also in Table2.” Like
Union, Difference only makes sense when the table’ fields are the same. For
example,

Nations — At600rAbove
produces a table without those countries with northern capitals—that is, without

Finland, Greenland, Iceland, and Norway. Interestingly, this command works just
as well if At600rabove had included Canadian provinces like the Yukon. That is,

QOperations on Tables 463

in a Difference command, the items “subtracted away” do not have to exist in
the original table.

Product Operation

Adding and subtracting tables is easy. What is multiplying tables like? The
Product operation on tables, which is written as

Tablel x Table2

creates a supertable. The table has the columns from both tables. So, if the first
table has five attributes and the second table has six attributes, the Product table
has eleven attributes. The rows of the new table are created by appending or con-
catenating each row of the second table to each row of the first table—that is, put-
ting the rows together. The result is the “product” of the rows of each table.

For example, if the first table is Nations with 230 rows, and the second table has
4 rows, there will be 230 x 4 = 920 rows, because each row of the Nations table
is appended with each row of the second table to produce a row of the result.

To illustrate, suppose you have a table of your traveling companions, as described
in Figure 16.11(a), containing the information shown in Figure 16.11(b).

Travelers Friend Homeland
Friend Text A Traveling Companion .
o . J P Isabela Argentina
Homeland Text Friend’s Home Country R R
Brian South Africa
Primary Key: Friend Wen China
{a) Clare Canada
(b)

Figure 16.11 (a) The definition of the Travelers table, and (b) its values.

Then the Product operation

Super = Nations X Travelers

creates a new table with ten fields—eight fields from Nations and two fields from
Travelers—a total of 920 rows. Some of the rows of the new table are shown in
Figure 16.12. For each country, there is a row for each of your friends.

The Product operation may seem a little odd at first because its all-combinations
approach merges information that may not “belong together.” And it’s true. But
most often, Product is used to create a supertable that contains both useful and
useless rows, and then it is “trimmed down” using Select, Project, and
Difference to contain only the intended information. This is a powerful
approach that we will use repeatedly in later sections.

To illustrate, suppose your traveling companions volunteer to tutor students
pposey g p
preparing for the National Geographic Societys Geography Bee. Each friend agrees

464 Chapter 16 A Table with a View: Introduction to Database Concepts
Name Dom Capital Lat NS Log EW Interest Friend Homeland
Cyprus CY Nicosia 35 N 32 E History Clare Canada
Czech Rep. CZ Prague 51 N 15 E Pilsner Isabella Argentina
Czech Rep. CZ Prague 51 N 15 E Pilsner Brian South Africa
Czech Rep. CZ Prague 51 N 15 E Pilsner Wen China
Czech Rep. CZ Prague 51 N 15 E Pilsner Clare Canada
Denmark DK Copenhagen 55 N 12 E History Isabella Argentina

Figure 16.12 Some rows from the supertable that is the product of Nations and Travelers. For each
row in Nations and each row in Travelers, there is a row in the product table that combines them.

to tutor students “on their part of the world,” that is, in the quarter of the planet
from which they come. So, Isabella, who comes from Argentina in the southern
and western hemispheres, agrees to tutor students on the geography of that part
of the world, and so on. Then you can produce a master list of who’ responsible
for each country. We'll call it the Master table. It is produced by these
commands:

Super = Nations X Travelers
Assign = (Select N.S = 'S' AND E W = 'W'
AND Friend = 'Isabella'’ From Super)
+ (Select N_S = 'S' AND EW-="E'
AND Friend = 'Brian' From Super)
+ (Select NS = 'N' AND E W = 'E’
AND Friend = 'Wen' From Super)
+ (Select NS = 'N' AND E_W = 'W'
AND Friend = 'Clare' From Super)

Master = Project Name, Friend From Assign
Notice that we have used Product (X), Union (+), Select, and Project.

How do these commands work? The Super table is the product table discussed
earlier with a row for each nation paired with each friend (see Figure 16.12).
Then the assign table is created by the Union operation (+) that combines four
tables, each created by a select operation from Super. The first Select keeps
only those countries from Super with Isabella’s name that are also in the southern
and western hemispheres. The second select keeps only those countries from
Super with Brian’s name that are in the southern and eastern hemispheres. The
same kind of operations are used for Wen and Clare. The resulting Assign table
has 230 rows—the same as the original Nations table—with one of your friends’
names assigned to each country.

We know that all of the countries are in the Assign table because every country is
in one of the four hemisphere pairs, and in Super there is a row for each country
for each friend. When the right combination “comes up,” the country will be cho-
sen by one of the four selects. In addition, Assign has the property that each
person is given countries in “their” part of the world. (Wen has been assigned the
greatest amount of work!) Finally, we throw away all of the location information
to create our Master list, keeping only the names of the countries and the friends

fitsYTE

Join Operation 465

responsible for tutoring students about that geography. Part of the result is shown
in Figure 16.13.

Name Friend s
Chad Wen
Chile Isabella x
China Wen
Christmas Is. Clare |
Cocos Is. Brian |

Figure 16.13 A portion of the Master
table of your friends’ assignments.

We have introduced five basic operations on tables. They are straightforward and
simple. It is surprising, therefore, that these five are the only operations needed to
create any table in a relational database. In practice, we will rarely use the opera-
tions directly, because they are incorporated into database software. When we
want to create tables from other tables—an idea that is now quite natural—we
will hardly be aware that we’re using these operations.

Quotient Intelligence. Thereis a Divide operation on tables, but it's com-
plicated and rather bizarre. Because it doesn’t give us any new capabilities, we will
leave it to the experts.

Join Operation

Another powerful and useful operation for creating database tables is Join. Indeed,
it is so useful that although Join can be defined from the five primitive database
operations of the last section, it is usually provided as a separate operator.

Join Defined

Join combines two tables, like the Product operation does, but it doesn't neces-
sarily produce all pairings. If the two tables each have fields with a common data
type, the new table produced by Join combines only the rows from the given
tables that match on the fields, not all pairings of rows, as does Product. We
write the Join operation as follows:

Tablel DX} Table2 on Match

The unusual “bow tie” symbol suggests a special form of Product in which the
two tables “match up.” Match is a comparison test involving fields from each table,
which when true for a row from each table produces a result row that is their con-
catenation. To refer to attributes in each table, we use the notation Table.Field, as
in Master.Name.

466

Chapter 16 A Table with a View: Introduction to Database Concepts

Join Applied

To show how Join works, recall the Northern table (Figure 16.9) and the
Master table of your friends’ assignments (Figure 16.13). The Join

Master P Northern On Master.Name = Northern.Name
pairs all rows where the country name matches the home country of a friend.

Which rows are those? This is how to find out. Beginning with the first row of the
Master table (shown here):

Name Friend
Afghanistan Wen
Albania Wen

the Afghanistan row does not have the same Name field as any of the four coun-
tries of Northern, so it is not part of the result. Nor does the Name in the second
row of Master (Albania) appear as a Name field in Northern. Indeed, only four
rows of Master have the same Name field as rows in Northern: Finland,
Greenland, Iceland, and Norway. We combine those four rows with their corre-
sponding rows in Northern to produce the four-row result shown in Figure
16.14. As you see, Join associates the information from the rows of two tables in
a sensible way. Thus, Join is used to create new associations of information in the
database.

There are at least two ways to think about the Join operation. One way is to see
it as a “lookup” operation on tables. That is, for each row in one table, locate a
row (or rows) in the other table with the same value in the common field; if
found, combine the two; if not, look up the next row. That’s how we explained it
in the last paragraph. Another way is to see it as a Product operation forming all
pairs of the two tables, and then eliminating all rows that don't match in the com-
mon fields. Both ideas accurately describe the result, and the computer probably
uses still another approach to produce the Join table.

Join, as described, is called a natural join because the natural meaning of “to
match” is for the fields to be equal. But as is typical of IT, it is also possible to join
using any relational operator (<, <, #, =, 2, >), not just = to compare fields.
Unnatural or not, a Join where T1.fieldID < T2.fieldID can be handy.

African Marathon Runners

To complete the task we discussed earlier of finding out how many African
marathon winners there have been in the history of the Olympics, we assume
there are tables Medalists1896, Medalists1900, . . ., Medalists2004, and that
there is a table, Africa, of African nation names, which includes colonial names
like Rhodesia and modern names like Zimbabwe.

Join Operation

Name Friend

Afghanistan Wen

Finland | Wen
AN

Greenland | Cla

Iceland L Claé\»
Norway Wen \

Name Dom | Lat

//V Finland FI 61
/ Greenland GL 72
/V Iceland Is 65

7
/

&

eee R -
) Norway NO 60
Zimbabwe i Brian\\ ///' s :
. . s
Name Friend | Dom | Lat
L Finland - Wen FI 61

P Greenland Clare GL 72

terermee Tceland Clare IS 65

. NOXwWay Wen NO 60

Figure 16.14 The Join operation: Master D<| Northern.

Assuming these tables, we write

All Medalists = Medalists1896 + Medalists1900 +
' ... + Medalists2004

which is a lot of typing. The A1l Medalists table contains the names, medal,
event, and country of everyone who won in the Olympics. Next, we pick out the
marathon winners with

Distance26 = Select medal='gold’ AND event='marathon'’
From All Medalists

The Distance26 table contains all runners who received a gold medal in the
Olympic marathon event. Next, eliminate everyone but the African winners with

Africa_marathon = Distance26 >}l africa
On Distance26.country = Africa.name

producing a table of African winners. Counting the rows produces the result.
Database software provides a function for counting the number of rows in a table,
which is applied in the present case as

count (Africa_marathon)

467

468 Chapter 16 A Table with a View: Introduction to Database Concepts

fitBYTE

Using the operators, we specified a set of tables that allowed us to find our solu-
tion. We will refine this skill after the next section.

You Can Look It Up. Database systems such as Microsoft's Access, MySQL
(pronounced my S-Q-L), and commercial database systems such as Oracle give
users the ability to answer database queries using the five primitive operations and
Join.

Structure of a Database

You have learned that by using the five primitive operations and Join we can cre-
ate tables from tables to answer questions from a database. But usually these oper-
ations are used in a slightly different way. We don't usually ask a single question
and quit. Rather, we want to arrange the information of a database in a way that
users see a relevant-to-their-needs view of the data that they will use continually.
Figure 16.15 shows a schematic of this idea.

Query

a

Tables

Physical database Query processor Logical database

Figure 16.15 Structure of a database system. The physical database is the
permanent repository of the data; the logical database, or view of the database,
is the form of the database the users see. The transformation is implemented by
the query processor, and is based on queries that define the logical database
tables from the physical database tables. ‘

In Figure 16.15 you see that there are two forms of tables. The physical database,
stored on the disk drives of the computer system, is the permanent repository of
the database. The logical database, also known as the view of the database, is cre-
ated for users on-the-fly and is customized for their needs. Why do we use this
two-level solution? The answer requires that we look a little closer at the two
groups of tables.

Physical and Logical Databases

The point of the two-level system is to separate the management of the data,
which is typically done at the physical database level, from the presentation of the
data, which typically involves many different versions for many different users.

Structure of a Database 469

Physical Database. The physical database is designed by database adminis-
trators so that the data is fast to access. More importantly, the physical database is
set up to avoid redundancy, that is, duplicating information. It seems obvious that
data should not be stored repeatedly because it will waste space, but disk space is
extremely cheap, implying that that isn't the reason to avoid redundancy. Rather, if
data is stored in multiple places in the physical database, there is a chance—possi-
bly, a good chance—that when its changed in one place, it will not be changed in
every other place where it is stored. This causes the data to be inconsistent.

For example, if your school stores your home address, and your major depart-
ment also stores a separate copy of your address, then when you notify the school
of your new residence, both addresses should be changed. But, with multiple
copies, that might not occur. If the database contains two different addresses for
you, then the school has no idea which address is correct; perfectly good informa-
tion gets turned into garbage because it is inconsistent. For this reason, database
administrators make sure that there is only one copy of each piece of data. That is,
data is not stored redundantly.

It might seem risky to keep only one copy of the data: What happens if it acci-
dentally gets deleted or the disk crashes? Database administrators worry about this
problem all the time, and have a process of making backup copies of the database,
which they store in a safe place, never to be used. That is, until the data is acciden-
tally deleted or the disk crashes—in other words—when the other copy is gone.
There is still only one copy.

Avoiding redundancy is obviously good, but keeping one copy seems to ignore

the fact that multiple users need the information. The administration needs to
send tuition bills, the dean needs to send notification that you “made the list,” and
the Sports Center needs to send you the picture of your photo finish; they all
need your address. Where do they get their copy? That’s where the logical data-
base comes in.

Logical Database. The logical database shows users the view of the informa-
tion that they need and want. It doesn't exist permanently, but is created for them
fresh every time they look at it. This solves the problem of getting everyone a
copy of the address. It’s retrieved from the one copy stored in the physical data-
base, and provided to the users as needed, fresh every time. Creating a new copy
each time is essential, because if it were to be created once and then stored on the
user’s computer, then there would be two copies of the information again—the
copy in the physical database and the one in the logical database—making the
data redundantly stored. So, it never stays on the user’s computer; its always
recreated. As a result, when you notify the administration that you moved in the
morning, the dean can send you a congratulatory letter in the afternoon and have
your correct address.

The other advantage of creating specialized versions of the database for each user
is that different users want to see different information. For example, the Sports
Center needs to record a student’s locker number, but no other unit on campus

470

Chapter 16 A Table with a View: Introduction to Database Concepts

cares. Similarly, the fact that a student is on academic probation is information
that most users of the school’s database don’t need to know, and it should not be
included in their view. In principle, each user wants a different view of the data-
base.

Queries. Queries are the key to making this two-level organization work. Each
user group, say the Dean’s Office, needs a version of the database created for
them. For each user table a query is formulated. A query is a specification using
the five operations and Join that define a table from other tables. Think of the
query as being written as described in the previous sections, but it is actually writ-
ten in the standard database language SQL, short for Structured Query Language.
Then, when the dean clicks on the table of Spring Term Grades, the database sys-
temn runs the query that defines that table, creating it and displaying it to the
dean. It probably doesn't exist in that form in the physical database, but select,
Project, and the other operations can define how to create it from the data that
is physically stored. On the next day, when the dean opens the table of Spring
Term Grades again, a new copy will be created, which means that the grade
change made the previous afternoon by some physics professor (and stored in the
physical database) will be visible to the dean.

It all seems pretty complicated, but it is not. Indeed, in the next section you will
see that it is all rather straightforward.

Defining Physical Tables

In this section we define two tables to be used for illustration purposes, focusing
on the roles of keys and relationships.

Database Schemes. Recall that the metadata specification of a database’ tables
is given by a database schema, or database scheme. Interactive software can help
us define a database schema, but, as we saw earlier, declaring an entity’s structure
is easy enough to do without software. The database schema is important because
it describes the database design. When we want to analyze a database design, we
look at its schema.

To illustrate the basics of the two-level approach, imagine a college having a set of
tables in its database schema, two of which are Student and Home_Base.

Student

Student_ID Number Eight digits

First_Name Text Single name, capitalized
Middle Name Text All other names, but family
Last_Name Text Family name

Birthdate Date

Grade_Point Number 0 <= GPA <= 4

Major Text None, or degree granting unit
On_Probation Boolean 0 is ‘no’; 1 is ’‘yes’

Primary Key: Student_ID

Structure of a Database 471

Home__Ba se

Student_1ID Number Eight digits

Street Text All address info before city

City Text No abbreviations like NYC ;
State Text Or province, canton, prefecture ... i
Country Text Standard postal abbreviations OK
Postal_ Code Text Full postal code

Primary Key: Student_ID

Figure 16.16 shows the preceding table definitions as they appear in the Microsoft
Access database system. Notice that they are different forms of the same thing.

Connecting Database Tables by Relationships

The Student entity records the information basic to the persons identity and
associates a student with his or her student_1Ip. This is the college’s master
record of each student. Part of each student’s information is where he or she lives.

ﬁ;\ﬂ e g e Table Tools Chapteris: Database tarcess 2007) - Mic. = ™%
= Momé Create . BemaiDats DstabsseTools | Design oo o e
3 s : Zainsert R B 87
¥ & ER o= I 774
- - R Detete Rows Pr» - nd
Vi * Primary Busder Tast v on &l xes
e wr, e gﬁwotup Column 5;5:?

F id Name
tudens 10 Number) &k gils
‘Street Text Ail addrass info before city

e

city Text N abbraviations like NYC
‘state Text Or Canton, Province, Prefecture,...
Text Standarg postal abbreviations OX
Text Fultest postal code possidiel

Data Type ... Deseription
Student IO Numbar Eight digits

_First_Name Text Single name, capitalized
Middie_Name Text All other names, but faruly
Text Family name
Cate/Time “Anno Domini
Number A number in {0.4]
Text None, or degrae granting unit
Yes/No Ois'no’, 1is'yes
; -
Fisld Properties

{b)

NS gy TR

{a)

Figure 16.16 Table declarations from Microsoft Access 2007: (a) Home_Base table declaration shown in
the design view; and (b) students table declaration. Notice that the key is specified by the tiny key next
to Student_ID in the first column.

472

Chapter 16 A Table with a View: Introduction to Database Concepts

Though we could put addresses in the student table, we decide not to. This is
because other campus units will want to access the address information, but they
shouldn't have access to all of the information (especially the sensitive informa-
tion) about each student. The addresses are stored in a different table, the
Home_Base table, which can have a lower security rating. Though these two tables
are separate, they are not independent. The Student_ID connects each row in
student with his or her address in Home_Base. We say that there is a relationship
between the two entities.

The Idea of Relationships. A relationship is a correspondence between
rows of one table and the rows of another table. Relationships are part of the
metadata of a database, and because they are critical to building the logical data-
base from the physical database, we give them names and characterize their
properties.

The relationship between student and Home_Base—that is, for each row in
Student there is a single row in Home_Base (found by the Student_1D)—will be
called Lives_At. Setting up the tables in this way is largely equivalent to storing the
address in student, but not all relationships are so close. This one is especially
close because it is based on the student_ID, which is the key for both tables.
(Recall that keys are unique, meaning no two rows can have the same value.) The
Lives_At relationship is said to be one-to-one.

Because we used the key student_ID in both tables, we not only can find the
address for each student, but we can also find the student for each address. That
is, there is a second relationship in the opposite direction, which we can call
Home_Of, meaning that the home base entry is the address of the student who has
that ID. Like Lives_At, Home_Of is a one-to-one relationship, because each row in
Home_Base corresponds to a single row in Student.

Relationship Examples. Familiar relationships that we encounter every day
illustrate that their description often ends with a preposition.

Y Father_Of, the relationship between a man and his child

> Daughter_Of, the relationship between a girl and her parent

> Employed_By, the relationships between people and companies
> Stars_In, the relationships between actors and movies

Names of database relationships should be meaningful to help people working
with the database, but like all names in computing, the computer doesn't know
whether the name makes sense or not.

Relationships in Practice. Database software systems need to know what
relationships exist among the tables if they are to help us create the logical data-
bases. The systems allow us to define relationships among tables. The details are
specific to each system, of course, but the example of Lives_At and Home_Of are
shown in Figure 16.17 as they would appear in Microsoft Access.

Structure of a Database

473

-
Home Sase [stugents Tep_Schotar &
¥ student © ¥ Student [et 2 staent D
Streat First_blame Mickname
{1 Top_Scholar 2 ity Kiddie_Name Factaid
. E Tap\§&\ciu:Tn." State Last_tame Summer_Piang
- Country Birthdate
Postai_{ode GP
Rajor
Probation
v
< g >

{(Reoey

Figure 16.17 The Relationships window from the Microsoft Access database
system; the 1-to-1 Lives_At and Home_Of relationships are shown between
Home_Base and Students.

Defining Logical Tables

The school’s administration probably thinks there is a single master list recording
all of the data for each student. Because thats what they want to see, it’s part of
the administration’ logical view of the database. So, we create it for them from the
physical database.

Construction Using Join. The relationships between the student and
Home Base tables allow us to construct a single table, Master_List, which con-
tains the combined information from both tables. How? Using the natural Join
operation, described earlier in this chapter. Recall that the natural Join creates a
table out of two other tables by joining rows that match—it’s an equality test—on
specified fields. Thus, we write

Master List = Student pey Home_ Base
Oon Student.Student_ID = Home Base.Student_ID

where the match is on the common field of Student_1D. Fields of the resulting
table are shown in Figure 16.18. We don't lose anything by storing the basic stu-
dent information in one table and the addresses in another, because with this sim-
ple command, we can create a table that recombines the information just as if it
were stored in a single table.

The important idea here is that although we chose to store the information in two
tables, we never lost the association of the information because we kept the
Student_ 1D with the addresses. The relationship Lives_At lets us connect each
student with his or her address by the Student_1p. The approach gives us the
flexibility to arrange tables so as to avoid problems of redundancy—though we
haven’t demonstrated that benefit yet—while keeping track of important informa-
tion, like where a person lives.

474 Chapter 16 A Table with a View: Introduction to Database Concepts

Student_ID
First_ Name
Middle_Name
Last_Name
Birthdate
On_Probation
Street_Address
City

State
Country
Postal_Code

Figure 16.18 Attributes of the Master_List table. Being created from Student
and Home_Base allows Master_List to inherit its data types and key
(Student_1D) from the component tables.

Practical Construction Using QBE. Though it wasn't difficult to write
the natural Join query in the last section to create the Master_List table, data-
base systems can make it even easier for us. A technique developed at IBM in the
1970s, called Query By Example (QBE), is available to us in the Microsoft
Access system. Basically, the software gives us a template of a table, and we fill in
what we want in the fields. That is, we give an example of what we want in the
table, referencing fields from other tables that have already been defined. The soft-
ware then figures out a query that creates the table from the sample table. It
couldn’t be easier! Figure 16.19 shows the QBE query window that will create
Master List.

The database software automatically creates the query needed for Master List.
What query did it create? We can ask and find out what it generated; see Figure
16.20. The query is expressed in SQL, the standard database query language. 1f
we could read SQL—it%s actually not too hard—we’d see that this query is the
query we created for Master List.

B Stugents

. : .
¥ stosent D e D

Street 3 First_Name

City Hiddie_Name

State Last_Name

Country Birthdate

Postal_Code GRa

B Bml -

ATV
S i
{Migdie Name Last Name : Birthdate (Probation

- Students Students Students
] =]

§

Figure 16.19 The Query By Example definition of the Master_List table from MS Access.

Structure of a Database

ELECT Students.Student_ID, Students.First_Name, Students.hiddie_Hame, Students.Last_Nams,
tudents.Birthdate, Students.Probation, Home_Base.Street, Home_Base.City, Home_Base.State,
Home_Base.State, Home _Base.Country, Home_Base.Postal_Code
FROM Home_Base INNER JOIN Students OH Home_Base.Student [= Students.5tud nt_ID;

B
&
: &1
»3?
12
12

Ready

Figure 16.20 SQL query created from the Query By Example
data in Figure 16.19.

The Dean’s View

475

Because the school administrators probably want to see the entire student record,
there isn’t much advantage to breaking the files into smaller tables in the physical
design, but it does make sense for others who only need to see parts of the data-
base in their view. To illustrate one more logical database, we create a view for the
dean.

Storing the Dean’s Data. We imagine that the database administrators
have set up a special table with the dean’s record of the students in the college.
The table definition is shown in Figure 16.21. The Top_Scholar is basically
information of interest only to the dean.

The table has a one-to-one relationship with the Home_Base table, based on the
Student_ID attribute, just as Student does: For each scholar, there is an address
in Home_Base. Therefore, there is a relationship between the Top_scholar and
the Home_Base tables, which we'll call Resides_At. The relationship gives the dean
access to the student’s hometown, which is something the dean wants to be

s

Top_Scholar:

Student_ID Number Eight digits

Nickname Text Informal handle for student
Factoid Text Data to remember student by
Summer_ Plans Text Or other conversation topic

Primary Key: Student_ID
{a)

; Description
Eight Digits
informal handie for student

i Data to remaember student by
‘Summer_Plans Or other conversation topic

Figld Properties

(b}

Figure 16.21 The Top_Scholar definition: (a) informal form, (b} in MS Access.

476

Chapter 16 A Table with a View: Introduction to Database Concepts

reminded of. Of course, there is a relationship in the opposite direction, too, from
Home_ Base t0 Top_Scholar.

Student_ID also connects Top_Scholar to Student. This is lucky, because oth-
erwise the dean doesn't know a student’s legal name, only the nickname. All of
this data can be combined in tables for the dean’ office using natural Join opera-
tions like we did in the last section, but the dean doesn’t want to see all that infor-
mation.

Creating a Dean's View. Imagine a table, known as the Dean’s View, con-
taining information specific to the dean’s unique needs. For example, because the
dean is not the person who sends letters to top students telling them they made
the “Dean’s List,” the Dean’s View doesn’t need the students’ full home addresses.
(Someone else in the dean’s office will need them.) The students’ hometowns are
enough information for the dean to make small talk at parties in honor of the
good students. So the Dean’s View will include information selected from the
physical tables, as shown in Figure 16.22.

Deans_View

Name Source Table
Nickname Top_Scholar Used by the dean to seem "chummy"
First_Name Student Name information required because
Last_Name Student the dean forgets the person’'s
actual name, being so chummy
Birthdate Student Is student of "drinking age"?
City Home_Base Hometown (given by city, state) is
State Home Base important for small talk, but
full address not needed by dean
Major Student Indicates what the student’s doing
in college besides hanging out
GPA Student How's student doing grade-wise
Factoid Top_Scholar Data to remember student by

Summer_ Plans Top_Scholar

Or other conversation topic

Figure 16.22 The Dean’s View fields showing their source in physical

database tables.

Notice that the dean doesn’t even want to see the student ID. We use it to create
the Dean’s View, but it doesn't have to be part of what the dean looks at in the

database view.

Join Three Tables into One. The first step in creating a query for the
Dean’s View is to note that it contains information from three tables:
Top_Scholar, the table actually storing the data the dean wants kept; student,
the college’s permanent record of the student; and Home_Base, the college’s cur-
rent address list. The information for each student must be associated to create the
Deans_View table, and the Join operation is the key to doing it. The expression

Structure of a Database 477

Dean_Data_Collect = ({Top_sScholar [Pt (Student P Home Base
On Student.Student_ID=Home_Base.Student_ID)
Oon Student.Student_ID=Top~$cholar.Student_ID)

makes a table that has a row for each student in the dean’s Top_scholar table,
but it also has all of the information from all three tables for that student. The
association of each student’s row in each table is accomplished by matching on the
Student_ID attribute.

Trim the Table. The resulting table contains too much information, of
course, because it has all the columns from the three tables. The dean doesn’t
want to see so much information. So, the second step is to retrieve only the
columns the dean wants to see.

The Project operation retrieves columns:

Deans_View =
Project Nickname, First_Name, Last_ Name, Birthdate,
City, State, Major, GPA, Factoid, Summer_Plans
From Dean_Data_Collect

In English, the query says, “Save the Nickname column, First_Name column,
and so forth, from the table, Dean_Data_Collect, that is formed by joining—
that is, associating on Student_ID—the three tables Top_Scholar, Student,
and Home_Base.” This is precisely what the dean wants. The query defines the
Deans_View table. Although the dean probably thinks the table exists physically,
it is created fresh every time it’s needed.

The join-then-trim strategy used to create the Dean’s View is a standard approach

to creating logical tables: a supertable is formed by joining several physical tables.
These ate then trimmed down to keep only the information of interest to the user.
The Deans_view query used Project, but Select and Difference are also fre-
quently used. ‘

Software Creates Dean’s View. If we add Top_Scholar to the Access
database schema given in Figure 16.16, and include the one-to-one relationship
between it and the other tables based on the Student_ID, as shown in Figure
16.17, then we can use Query By Example again to define the Dean’s View, saving
ourselves the effort of working out our own query, though writing SQL directly
wouldn’t be that difficult. Figure 16.23 shows the QBE window from Microsoft
Access that defines the Dean’s View {rom the three tables.

For the record, the SQL query that Access produced for us based on our example
from Figure 16.23 is shown in Figure 16.24. It is the identical query we devel-
oped ourselves, expressed in SQL syntax. (Notice that SQL uses the word “Select”
where we used “Project”; the concepts are the same, but the term is different
between the theory of relational databases and the SQL language. This naming
inconsistency is an annoying feature of the study of databases.)

478 Chapter 16 A Table with a View: Introduction to Database Concepts
|
‘% »
§ Home Base Stustents Top Sehoin | o
. . . . -
[I
[t ¢ Student I L& 9 studem i LA 9 swgentio
% : Street First_Hame thckname
% i city 14iddte_Name Factoid
3 2 i State {ast_Mame Summes_Flans
& Country Birthdate
L e I Postal_Code GPs
2 . . - " 3 Aaimi M -
@ i B E‘} b
% : Field: flast Name Birthdste Oty State 801 [Factoid Summet_Plans _-:j :
§ Table: |Stugemts Students Home_Base Home Base Students Students Top_Stholas Top Sthotar e
Sort:
§ Show i o
i Crteria:
§ i or -
L 4 =y L L
Ready (BB G

Figure 16.23 The Query By Example definition of the Dean’s View table as expressed

in Microsoft Access 2007.

.

i» < Dean -

%. | {SELECT Top _Schotardhickname, Students.First_Name, Stud tast_tiams Students.Buthdate Home Base.ldy,

f% £ iHome BaseState, Studentstiajor, Students.GP~, Top Scholat.Factoid, Top Scholar.Summes Plans

L& | [FROLI (Home_Base INNER JOIN Stutents ON Home_Base Student_ID = Students.Student_iT; IHHER JOIM

g £ | Top_Scholar OH Students.Student 1D = Top_Scholar.Student_ID;

§ § ¢

'3

H

13

1= gl
i Ready o Y !%

Figure 16,24 SQL query created for the Dean’s View by the Query By
Example data in Figure 16.22.

. SUMMARY

In this chapter we followed a path from XML tagging through to the construction
of logical views using QBE. You learned a lot, including:

by
£

£

by

XML tags are an effective way to record metadata in a file.

Metadata is used to identify values, can capture the affinity among val-
ues of the same entity, and can collect together a group of entity
instances.

Database tables have names and fields that describe the attributes of the
entity contained in the table.

The data that quantitatively records each property has a specific data
type and is atomic.

There are five fundamental operations on tables: Select, Project,
Union, Difference, and Product. These operations are the only ones
you need to create new tables from other database tables.

Join is an especially useful operation that associates information from
separate tables in new ways, based on matching fields.

Review Questions

Y Relationships are the key to associating fields of the physical database.

> The physical database resides on the disk drive; it avoids storing data
redundantly and is optimized for speed.

» The main approach for creating logical views from physical data is the
join-and-trim technique.

3 There is a direct connection between the theoretical ideas of database
tables and the software of database systems.

Review Questions

Multiple Choice

1.

If you know the structure and properties of data you can
a. retrieve it

b. organize it

c. manage it

d. all of the above

An important task when defining metadata is to
a. identify the type of data

b. normalize the data

c. define the affinity of the data

d. more than one of the above

. Which of the following is an invalid XML tag?

a. <address>

b. <stud ID>

c. <cellPhone>
d. <8sN>

Which of the following is a valid XML tag?
a. <active?>

b. <grad-date>

c. <zip code>

d. <poB>

The first tag in an XML document is known as a(n)
a. metatag

b. tree
c. root element
d. entity

An XML comment looks like
a. <!--Updated 09-26-07-->
b. <t Updated 09-26-07 !>
c. <" Updated 09-26-07 ">
d. </ Updated 09-26-07>

479

480 Chapter 16 A Table with a View: Introduction to Database Concepts

7.

10.

11.

=)
@

© W N OO s W N .

In database terminology, a set of entities refers to
a. field

b. column

c. table

d. information

The kind of information stored in a field in a database is described by the
a. tuple

b. field name

c. datatype

d. record

A Project operation will

a. return a table with as many rows as the original tables

b. return only unique rows and merge duplicate rows

¢. automatically sort the list in alphabetical order by the first field
d. all of the above

The Test in a select command is used to
a. add rows to an existing table

b. remove rows from an existing table

c. include rows in a new table

d. describe rows in any table

Databases store data just once

a. in order to avoid data redundancy
b. because data storage is expensive
c. because data access is slow

d. all of the above

is information describing other information.
XML is , that is, the tags create the structure of the data.
XML should be edited with a

XML attributes must be enclosed in

A(m) ____ isa group of related items in an XML document.

The rules for XML encodings are a hierarchical description called
describe the relationships among the different kinds of data.

A(n) ____ is used to ensure that all entities in a database are unique.

Data that cannot be decomposed into smaller parts is considered

A(n) is a collection of table definitions that give the name of the
table, list of the attributes and their data types, and identifies the primary
key.

Review Questions 481

1. A(n) is a specification using the five operations and join that define
a table from other tables.

12. A(n) between two tables means that there is a corresponding row in
one table for every row in the other table.

Exercises

1. Use XML to define your class schedule.

2. Create a list of IDs you have that could be considered primary keys in a
database.

3. For the following, either indicate that the field is atomic or divide the field to
make the result atomic.

Field Contents

Phone (212) 555-1212
Name Maria Murray

Class CSE 100

City Seattle, WA

DOB September 26, 1948

4. Take your class schedule from Exercise 1 and define it as a database table.

5. Define the attribute names, data types, and optional comments needed to
create a table that could be used as a datebook.

6. Write an operation to display the Name and Interest from the Nations table
for those countries with Beach, and store it in a table called vacation.

7. Create tables that might exist with your student information on campus.
Include such areas as Registrar, Bursar, Library, Financial Aid, Food Service,
Residence Halls, Parking, and so forth.

8. Take a look at one of your monthly bills, such as the cable bill, phone bill or
utility bill. What fields are used and what is their structure?

9. Using a text editor, create your own XML file containing CD or DVD infor-
mation. Open the file in a browser.

10. Create a table with information from your driver’s license.

