

- Spec ial guests to day:
* Informa tic s students:
- Benji Sc hwa rtz-G ilb ert
- Ryan Musgrave
- Devyn J ones

- Why is BYTE spelled with a Y?
* The Engineers at IBM were looking for a word for a quantity of memory between a bit and a word (usually 32 bits).
- They liked bite but too close to bit
- Typing errors could confuse the two
- Changed the ito a y to make them distinct

Everyone knows computers use bits and bytes ... but what are they?

Information must be in a form that * Humans can understand and * Computers can manipulate

Digitizing bridges the gap

- Digitize: Represent information with digits (noma lly base-10 numerals 0 through 9)
- Limita tion of Digits
* Altemative Representation: Any set of symbols c ould represent phone number digits, as long as the keypad is labeled accordingly

- Symbols, Briefly
* Digits ha ve the adva nta ge of having short names (easy to say)
* But c omputer professiona ls a re shortening symbol names
- Period is "dot"
- Exclamation point is pronounced "bang"

Figure 8.1. Three symbol assignments for a telephone keypad.

- Digits for enc oding info
* Can list items in numerical order
- To use othersymbols, we need an ordering system (collating sequence)
* Agreed order from sma llest to la rgest value
- In choosing symb ols for enc oding, consider how symbols interact with things being encoded

- Analog is continuous data/information * Sound waves

Time

- Digital is disc rete data/information * Many distinct samples of data
* Stored in binary (0's a nd 1's)
- All data in a computer is represented in binary

Time

- The funda mental pattems used in ITcome when the physical world meets the logical world
- The most funda mental form of information is the presence orabsence ofa physical phenomenon
- In the logical world, the concepts of true and false a re importa nt
* Associate true with presence of a phenomenon and false with its absence, we use the physical world to implement the logical world, and produce information technology
- PandA is the mnemonic for "presence and absence"
- It is disc rete (distinct or separable)the phenomenon is present or it is not (true or false; 1 or 0). There in no continuous gradation in between.

- Two pattems make a bina ry system
* Base 2 (0's or 1's)
- The basic binary unit is known as a "bit" (short for bina ry digit)
- 8 bits a re grouped together to form a byte
* Memory accessed by byte addresses
- We can give any na mes to these two pattems as long aswe are consistent
* PandA (Presence and Absence can represent 1 and 0, respectively)

Present	Absent
1	0
On	Off
Yes	No
+	-
Black	White
For	Against
Yang	Yin
Lisa	Bart

- Memory is a rranged inside a computer in a very long sequence of bits
* Bits = places where a phenomenon can be set and detected
- Analogy: Sidewalk "Memory"
* Each sidewalk squa re represents a memory slot, or bit, and stones represent the presence orabsence
* If a stone is on the square, the value is 1 , if not the value is 0

Figure 8.2 Sidewalk sections as a sequence of bits (1010 0010).

- Altemate waysto encode two states using physical phenomena
* Use stones on all squa res, but black stones for one state and white for the other
* Use multiple stones of two colors per square, saying more blackthan white means 0 and more white than black means 1
* Stone in center for one state, off-centerfor the other
* etc.

- Since we only have two pattems, we must combine them into sequences to create enough symbols to encode necessary information
- Bina ry (Pa nd A) has 2 pattems, a rranging them into n-length sequences, we can create 2^{n} symbols

- Number of symbols when the number of possible pattems is two (0 and 1)

n	$2^{\text {n }}$	Symbols
1	2^{1}	2
2	2^{2}	4
3	2^{3}	8
4	2^{4}	16
5	2^{5}	32
6	2^{6}	61
7	2^{7}	128
8	2^{8}	256
9	2^{9}	512
10	2^{10}	1,024

- Rec all in Cha pter 4, we specified custom colors in HTML using hex digits
* e.g., <p bgColor ="\#FF8E2A">
* Hex is short forhexadecimal (base 16)
-Why use hex?
* Writing the sequence of bits is long, tedious, and error-prone

- Sixteen values can be represented perfectly by 4-bit sequences ($2^{4}=16$)
- Changing hexdigits to bits and back a ga in:

Binary	0101	1100
Hex	5	C
Hex	3	G
Binary		

Decimal
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Hex
0
1
2
3
3
4
5
6
7
8
9
A
B
C
D
E
F

Binary
0000
0001
0010
0011
0100
0101
0100
0111
1000
1001
1010
1011
1100
1101
1110
1111

- Early binary representation-1 and 0encoded numbers and keyboard characters
- Now representation for sound, video, a nd othertypes of information
- For encoding text, what symbols should be included?
* We want to keep the list small enough to use fewer bits, but we don't want to leave out critical characters

Characters	Quantity
Uppercase letters	26
Lowercase letters	26
Arithmetic characters (0-9)	10
Punctuation characters (including space)	20
Non-Printable characters	3
	Total

0	NUL	1	SOH	2	STX	3	ETX	4	EOT	5	ENQ	6	ACK	7	BEL
8	BS	9	HT	10	NL	11	VT	12	NP	13	CR	14	So	15	SI
16	DLE	17	DC1	18	DC2	19	DC3	20	DC4	21	NAK	22	SYN	23	ETB
24	CAN	25	EM	26	SUB	27	ESC	28	FS	29	GS	30	RS	31	US
32	SP	33	!	34	"	35	\#	36	\$	37	\%	38	\&	39	
40	(41)	42	*	43	+	44		45	-	46		47	/
48	0	49	1	50	2	51	3	52	4	53	5	54	6	55	7
56	8	57	9	58	:	59	;	60	<	61	=	62	>	63	?
64	@	65	A	66	B	67	C	68	D	69	E	70	F	71	G
72	H	73	I	74	J	75	K	76	L	77	M	78	N	79	0
80	P	81	Q	82	R	83	S	84	T	85	U	86	V	87	W
88	X	89	Y	90	Z	91	[92	\}	93]	94	\wedge	95	-
96		97	a	98	b	99	c	100	d	101	e	102	f	103	g
104	h	105	i	106	j	107	k	108	1	109	m	110	n	111	o
112	p	113	q	114	r	115	S	116	t	117	u	118	v	119	W
120	x	121	y	122	z	123	\{	124	\|	125	\}	126	\sim	127	DEL

Hexadecimal - Character

| 00 | NUL | 01 | SOH | 02 | STX | 03 | ETX | 04 | EOT | 05 | ENQ | 06 | ACK |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0^{07} BEL

- By the mid-1960's, it became clear that 7bit ASC II was not enough to represent text from la nguages other than English
- IBM extended ASC II to 8 bits (256 symbols)
- Called "Extended ASC II," the first half is original ASCII with a 0 added at the beginning of each group of bits
- Ha nd les most Westem la ng ua ges a nd additional useful symbols

Character Binary

$\#$	0010	0011
\odot	1010	1001
\dot{e}		1110

ASCII	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	1 1 1 1
0000	Nu_{u}	s_{H}	${ }^{\text {s }} \mathrm{x}$	${ }^{5} \times$	E_{T}	E_{0}	${ }^{\text {A }}$	${ }_{\text {B }}$	${ }^{\text {B }}$	${ }_{\text {H }}$	${ }_{\text {L }}$	v_{T}	F_{F}	C_{R}	so	s_{1}
0001	D_{L}	${ }_{1}$	D_{2}	O_{3}	D_{4}	${ }^{\text {N }}$	s_{r}	E_{Σ}	c_{N}	E_{M}	s_{B}	${ }_{\text {E }}^{\text {c }}$	F_{s}	${ }^{6}$	R_{s}	$u_{\text {s }}$
0010		！	11	\＃	\＄	\％	\＆	＇	（	）	＊	＋	，	－	．	／
0011	0	1	2	3	4	5	6	7	8	9	：	；	＜	＝	＞	？
0100	＠	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
0101	P	Q	R	S	T	U	V	W	X	Y	Z	［	1	］	\wedge	－
0110	－	a	b	C	d	e	f	9	h	i	j	k	1	m	n	\bigcirc
0111	p	q	r	S	t	u	V	W	X	Y	z	\｛		\}	～	${ }^{\text {D }}$
1000	${ }_{8}^{8}$	${ }^{8} 1$	8_{2}	83	${ }^{\text {in }}$	N_{L}	$\mathrm{s}_{\text {s }}$	$\mathrm{E}_{\text {S }}$	$\mathrm{H}_{\text {s }}$	H_{3}	${ }^{\text {r }}$	P_{0}	P_{v}	${ }_{\text {R }}$	s_{2}	s_{3}
1001	${ }^{\text {c }}$	P_{1}	P_{z}	s_{E}	c_{c}	m_{M}	s_{p}	E_{p}	o_{8}	0_{0}	${ }_{\text {a }}$	c_{s}	${ }_{\text {s }}^{\text {T }}$	o_{s}	${ }^{\text {P }}$	A_{p}
1010	A_{0}	i	¢	£		玨	1	§	．．	（C）	\bigcirc	［	ᄀ	－		－
1011	－	\pm	2	${ }^{3}$	－	μ	¢	－	，	1	σ^{*}	3	1／4	1／2	3／4	¿
1100	A	Á	Â	Ã	À	A	厄	Ç	E	É	$\hat{\mathrm{E}}$	E	I	İ	$\hat{\mathrm{I}}$	$\stackrel{\text { I }}{ }$
1101	Đ	N	O	O	Ô	Õ	O	\times	\varnothing	U̇	Ú	U	Ü	Y＇	P	β
1110	à	á	â	ã	a	$\stackrel{\circ}{\circ}$	æ	C	è	é	e	e	1	1	̂̂	1
1111	ठ	ñ	ò	ó	ô	õ	O	\div	\varnothing	ù	ú	ut	ü	立	P	$\ddot{\mathrm{y}}$

Digits in Phone number

888	0011 0011 0000 0011	1000
5	0011 0101 0011 0101 0011 0101	
	0011	0001
1	0011	0010
2	0011	0001
1	0011	0010
2		

ASCII	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	1 1 1 1	
0000	N_{u}	${ }^{\text {S }}$	${ }^{\text {s }} \times$	${ }^{\text {E }}$ ¢	E_{T}	ε_{0}	${ }^{\text {A }}$	${ }^{\text {B }}$	${ }_{5}$	${ }_{\text {H }}$	${ }_{\text {L }}$	${ }_{\text {T }}$	F_{F}	c_{B}	so	s_{I}	
0001	D_{L}	o_{1}	O_{2}	D_{3}	D_{4}	${ }^{\text {K }}$	${ }_{\text {s }}{ }^{\text {r }}$	E_{E}	${ }^{c_{N}}$	${ }_{\text {E }}^{\text {M }}$	S_{B}	${ }_{\text {E }}$	F_{s}	${ }^{\text {G }}$	${ }^{\text {R }}$	u_{s}	
0010		!	"	\#	\$	\%	\&	'	1)	*	+	,	-	.	/	
0011	0	1	2	3	4	5	6	7	8	9	:	;	<	=	$>$?	
0100	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	
0101	P	Q	R	S	T	U	V	W	X	Y	Z	[\backslash]	\wedge		
0110	-	a	b	C	d	e	f	9	h	i	j	k	1	m	n	-	
0111	p	q	r	S	t	u	V	W	X	Y	z	\{		\}	\sim	${ }^{\text {d }}$	
1000	${ }_{8}^{8}$	${ }^{8} 1$	${ }_{8}$	${ }^{8}$	${ }^{\text {IN }}$	NL	s_{s}	$\mathrm{E}_{\text {S }}$	${ }_{\text {H }}$	${ }^{\text {J }}$	${ }^{\text {r }}$	${ }_{\text {P }}$	P_{v}	${ }_{\text {R }}^{\text {I }}$	S_{2}	s_{3}	
1001	${ }^{\text {D }}$	P_{1}	P_{z}	S_{E}	${ }^{\text {c }}$ c	M_{M}	s_{p}	E_{p}	a_{8}	${ }^{\circ}{ }_{0}$	${ }^{\circ}{ }_{\text {A }}$	$\mathrm{c}_{\text {s }}$	${ }_{\text {st }}$	${ }^{\circ}$ s	${ }^{\text {P }}$ M	A_{p}	
1010	${ }^{\text {a }}$	i	¢	£		¥	!	§	..	(C)	\bigcirc	[\neg	-	(R)		
1011	-	\pm	2	${ }^{3}$	-	μ	\\|	.	,	1	${ }^{*}$	\}	1/4	1/2	3/4		
1100	A	Á	Â	Ã	Ȧ	A	厌	Ç	E	E	E	E	I	İ	$\hat{\text { I }}$	İ	
1101	Đ	N	O	O	Ô	Õ	Ö	\times	\varnothing	U̇	Ú	U	Ü	Ý	P	β	
1110	à	á	â	ã	ä	$\stackrel{\circ}{\text { a }}$	æ	¢	è	é	\hat{e}	è	1	1	̂	i	
1111	ð	ñ	ò	ó	ô	o	○	\div	\varnothing	ù	ú	û	ü	ý	P	\#̈	

Digits in Phone number

8	0011	1000
5	0011	0101
1	0011	0001
2	0011	0010

ASCII	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 1 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 1 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 0 \\ 0 \\ 1 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	1 1 1 1
0000	Nu^{0}	s_{H}	${ }^{\text {s }} \times$	${ }_{\text {E }}$	E_{T}	${ }_{0}$	${ }^{\text {a }}$	${ }_{\text {B }}$	${ }^{8}$	${ }_{\text {H }}$	${ }_{\text {L }}$	${ }_{\text {r }}^{T}$	F_{F}	$\mathrm{c}_{\text {R }}$	s_{0}	s_{1}
0001	D_{L}	${ }_{0}$	D_{2}	D_{3}	D_{4}	${ }^{\text {NK}}$	s_{r}	$\mathrm{E}_{\mathrm{\Sigma}}$	${ }^{\text {c }}$ N	${ }_{\text {E }}^{\text {M }}$	s_{B}	${ }_{\text {E }}$	${ }^{\text {F }}$	${ }^{\text {G }}$	${ }^{\text {R }}$	u_{s}
0010		$!$	"	\#	\$	\%	\&	')	*	+	,	-	.	/
0011	0	1	2	3	4	5	6	7	8	9	:	;	$<$	=	>	?
0100	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
0101	P	Q	R	S	T	U	V	W	X	Y	Z	[\backslash]	\wedge	
0110	-	a	b	C	d	e	f	9	h	i	j	k	1	m	n	
0111	p	q	r	S	t	u	V	W	x	Y	z	\{		\}	~	
1000	${ }_{8}^{8}$	${ }_{1} 1$	8	${ }^{8}$	${ }^{\text {I }}$ N	NL	s_{s}	${ }^{\text {E }}$	$\mathrm{H}_{\text {s }}$	${ }^{\text {J }}$	${ }^{\text {s }}$	P_{D}	P_{v}	${ }_{\text {R }}$	S_{2}	s_{3}
1001	D_{c}	${ }^{\text {P }} 1$	P_{z}	S_{E}	${ }^{\text {c }}$ c	M ${ }_{\text {M }}$	s_{p}	E_{p}	O_{8}	${ }^{\circ}{ }_{0}$	${ }^{\circ}{ }_{A}$	c_{s}	${ }_{\text {st }}$	${ }^{\circ}$	${ }^{\text {P }}$ M	${ }^{\text {A }}$
1010	${ }^{\text {a }}$	i	¢	£		装	!	§	..	(C)	\bigcirc	[1	ᄀ	-		
1011	-	\pm	2	${ }^{3}$	-	μ	d			1	σ^{*}	\}	1/4	1/2	3/4	
1100	A	Á	Â	Ã	A	A	E	Ç	E	É	E	E	I	I	I	I
1101	Đ	N	O	O	Ô	Õ	O	\times	\varnothing	U̇	U'	\hat{U}	Ü	Y'	P	β
1110	à	á	â	ã	à	$\stackrel{\circ}{\text { a }}$	æ	¢	è	é	ê	è	1	1	̂̂	
1111	ठ	n	ò	ó	ô	o	0	\div	\varnothing	ù	ú	û	ü	ý	P	У̀

- Several languages around the world have more than 256 individual characters
- Unic ode uses 16 bits; $2^{16}=65536$ characters
* $1^{\ddagger} 7$ bits (128 chars) are ASCII chars * Different locales-different characters beyond $1^{\text {tt }} 7$ bits

- The code forbroadcast communication is purposefully ineffic ient, to be distinctive when spoken a mid noise

Table 8.4 NATO broadcast alphabet designed not to be minimal

A	Alpha	H	Hotel	O	Oscar	V	Victor
B	Bravo	I	India	P	Papa	W	Whiskey
C	Charlie	J	Juliet	Q	Quebec	X	X-ray
D	Delta	K	Kilo	R	Romeo	Y	Yankee
E	Echo	L	Lima	S	Sierra	Z	Zulu
F	Foxtrot	M	Mike	T	Tango		
G	Golf	N	November	U	Uniform		

- Extended ASCII encodesletters and characters well, but most documents conta in more than just text.
* Format information like font, font size, justification
- Formatting characters could be added to ASC II, but that mixes the c ontent with the description of its form (metadata)
* Metadata is "data about data"
- ${ }_{8,35}$ Metadata is represented using tags, asin ${ }^{8,35} \mathrm{HTML}$

Bits and bytes encode the information, but that's not all

* Tags encode format and some structure in word processors
* Tags enc ode format and some structure in HTML
* In the Oxford English Dictionary tags encode structure and some fomatting

- Oxford Eng lish Dictionary (OED) printed version is 20 volumes
- We could type the entire contents as ASC II characters (in a bout 120 years), but searching would be diffic ult
* Suppose you search for the word "set." It is included in many other words like closet, ho rseta il, settle, etc
* How will the software know what characters comprise the definition of set?
- Inc orporate meta data

- Special set of tags was developed to specify OED's structure
* <uw>means headword, the word being defined
* Othertagslabel pronunciation $\langle p r$, phonetic notation <ph>, parts of speech <ps>
- The tags do not print. They are there only to specify structure so the computer knows what part of the dictionary it is looking at

byte (baIt). Computers. [Arbitrary, prob. influenced by bit sb. ${ }^{4}$ and bite sb.] A group of eight consecutive bits operated on as a unit in a computer. 1964 Blaauw \& Brooks in IBM Systems JrnI. III. 122 An 8bit unit of information is fundamental to most of the formats [of the System/360]. A consecutive group of n such units constitutes a field of length n. Fixed-length fields of length one, two, four, and eight are termed bytes, halfwords, words, and double words respectively. 1964 IBM Jrnl. Res. \& Developm. VIII. 97/1 When a byte of data appears from an I/O device, the CPU is seized, dumped, used and restored. 1967 P. A. Stark Digital Computer Programming xix. 351 The normal operations in fixed point are done on four bytes at a time. 1968 Dataweek 24 Jan. $1 / 1$ Tape reading and writing is at from 34,160 to 192,000 bytes per second.

```
<e><hg><hw>byte</hw> <pr><ph>baIt</ph></pr></hg>. <la>Computers</la>.
<etym>Arbitrary, prob. influenced by <xr><x>bit</x></xr>
<ps>n.<hm>4</hm></ps>and <xr><x>bite</x> <ps>n.</ps> </xr></etym>
<s4>A group of eight consecutive bits operated on as a unit in a
computer.</s4> <qp><q><qd>1964</qd><a>Blaauw</a> &amp. <a>Brooks</a>
<bib>in</bi.b> <w>IBM Systems Jrnl.</w> <lc>III. 122</lc> <qt>An 8-bit
unit of information is fundamental to most of the formats <ed>of the
System/360</ed>.&es.A consecutive group of <i>n</i> such units
constitutes a field of length <i>n</i>.&es.Fixed-length fields of
length one, two, four, and eight are termed bytes, halfwords, words,
and double words respectively. </qt></q><q><qd>1964</qd> <w>IBM Jrnl.
Res. &amp. Developm.</w> <lc>VIII. 97/1</lc> <qt>When a byte of data
appears from an I/O device, the CPU is seized, dumped, used and
restored.</qt></q> <q><qd>1967</qd> <a>P. A. Stark</a> <w>Digital
```

Table 8.3 Sixteen symbols of the 4-bit PandA representation

Symbol	Binary	Physical Bits	Hex	Symbol	Binary	Physical Bits	Hex
AAAA	0000		0	PAAA	1000		8
AAAP	0001		1	PAAP	1001		9
AAPA	0010	$2+25$	2	PAPA	1010		A
AAPP	0011		3	PAPP	1011		B
APAA	0100		4	PPAA	1100		C
APAP	0101		5	PPAP	1101		D
APPA	0110		6	PPPA	1110		E
APPP	0111		7	PPPP	1111		F

Course Web site:

* http://www.cs.washington.edu/educat ion/courses/100/07au/

Address munging: http://www.addressmunger.com

IT joins physic al \& logic al doma ins so physical devices do our logical work

* Symbols represent things 1-to-1
* Create symbols by grouping pattems
* PandA representation is fundamental
* Bit, a place where 2 pattems set/detect * ASC Il is a byte encoding of Latin abet
* In addition to content, encode structure with tags

