

- New deadlines because of snow
 - * Today by 5pm: Labs 4 and 5
 - * Tomorrow by 11pm: Project 1A
 - * A week from tomorrow by 11pm: Project 1B
 - Thursday, February 7

- Quiz 2
 - * Each quiz was different
 - * Your TA will tell you if your

- Quiz 3
 - * Thursday and Friday
 - * Chapters 7 and 8 of *Fluency*
 - * Review
 - Questions at end of chapters
 - Answers at back of book
 - Lectures

- Chapter 10 for today
- Chapter 18 for Friday


```
<html>
  <head>
     <title>Basic HTML</title>
  </head>
  <body>
  </body>
</html>
```



```
<html>
  <head>
     <title>Basic HTML</title>
  </head>
  <body>
  </body>
</html>
```



```
<html>
  <head>
     <title>Basic HTML</title>
  </head>
  <body>
  </body>
</html>
```



```
<html>
  <head>
    <title>Basic HTML</title>
  </head>
  <body>
   Content on the Web page goes
   here
  </body>
</html>
```



```
<html>
  <head>
    <title>Basic HTML</title>
  </head>
  <body>
   Content on the Web page goes
   here
  </body>
</html>
```



```
<html>
  <head>
    <title>Basic HTML</title>
  </head>
  <body>
   Content on the Web page goes
   here
  </body>
</html>
```


HTML DOCTYPE

```
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0</p>
  Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<a href="http://www.w3.org/1999/xhtml" lang="en"
  xml:lang="en">
<head>
  <meta http-equiv="content-type"
       content="text/html;charset=utf-8" />
  <meta http-equiv="Content-Style-Type" content="text/css"</pre>
  />
  <title>An XHTML 1.0 transitional template</title>
</head>
<body>
```


DOCTYPE and Validator

- DOCTYPE helps the Web Browser display your file properly on the Web
- Validator looks for the DOCTYPE
 - * Many versions of HTML
 - From 1.0 to 4.01
 - * Now we're moving to XHTML
 - Compliant with XML
 - We'll look at XML later in course

- Delete any blank lines or tabs or spaces at top of file.
- Change all tags to lower case.
- Put quotes around all attributes in tags
- Fix deprecated, or obsolete, tags:
 - * Change to
 - * Change <i> to
 - * Change <u> to

- Fix these three special tags so they self-close:
 - * Change
 to

 - * Change <hr>> to <hr />
 - * Change to

- Nesting issues:
 - * Tags must be "nested" properly:
 - RIGHTBook Title by Author
 - WRONGBook Title by Author
 - * Right or wrong?
 - Nesting means always wrap the text with one set of tags and then wrap that within the next

- Nesting issues:
 - * Don't nest a list within tags
 - * Always put
 within or <div> or <a> tags
 - * An <a> tag can be within a tag but a cannot be inside an <a> tag.

Validating XHTML 1.0

- Fix one error, save, upload, refresh, revalidate; many errors will fall away.
- The Validator will read the DOCTYPE and know which version of HTML or XHTML you are using
 - * DOCTYPE helps the Web browser display the page correctly

What's The Plan? Algorithmic Thinking

Step-by-step directions for whatever someone, or the computer, needs to do

Algorithm

- A precise, systematic method for producing a specified result
- In real life we do this all the time:

Video

Algorithms

Five Essential Properties of Algorithms

Input specified

- Data to be transformed during the computation to produce the output
- Must specify type, amount, and form of data

2. Output specified

- Data resulting from the computation intended result
- * It is possible to have no output

Five Essential Properties (cont'd)

3. Definiteness

- Specify the sequence of events
- Details of each step, including how to handle errors

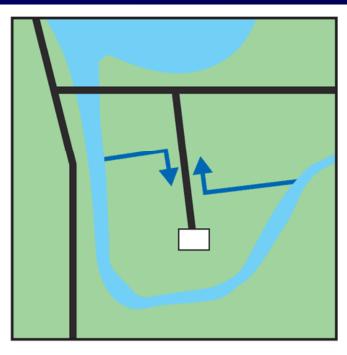
4. Effectiveness

* The operations are doable

5. Finiteness

Must eventually stop

Language in Algorithms


- Natural language
 - * For people, we use a natural language like English
 - * Ambiguity is common in natural language
- Programming Language
 - * Formal languages designed to express algorithms
 - * Precisely defined; no ambiguity

Context Matters

- Program can fulfill five properties of an algorithm, be unambiguous, and still not work right because it is executed in the wrong context
 - * e.g., last name in Western countries means family name; in Asian countries it may mean given name
- Context matters: Driving instructions
 - * "From the Limmat River go to Bahnhof Strasse and turn right."
 - * Assumes you are traveling in a specific direction. If you are not, the directions will fail.

Figure 10.1. Diagram of approaching a street (Bahnhof Strasse) from different directions, giving the "turn right" instruction different meanings.

Program vs. Algorithm

- A program is an algorithm that has been customized to
 - * solve a specific task
 - under a specific set of circumstances
 - -using a specific language
- Algorithm is a general method; program is a specific method

An Algorithm: *Alphabetize CDs*

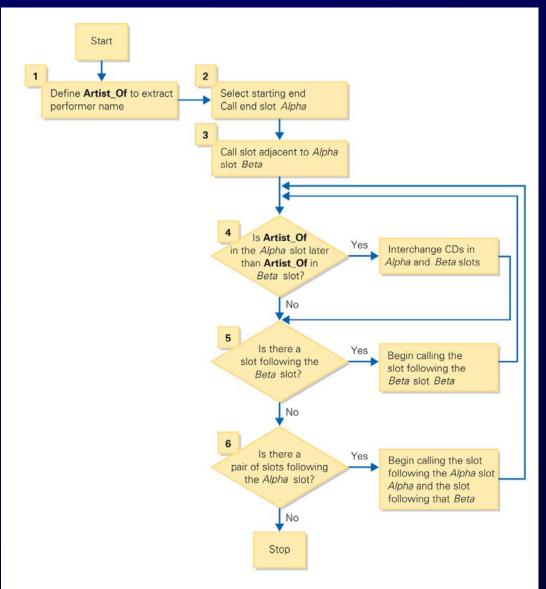
- Imagine CDs in a slotted rack, not organized
- You want to alphabetize by name of group, performing musician, or composer
- How do you solve this problem?

Animation

Sorting CDs

Analyzing Alphabetize CDs Algorithm

- Illustrates the five basic properties of algorithms
 - Inputs and Outputs were listed
 - Each instruction was defined precisely (definiteness)
 - Operations are effective because they are simple and mechanically doable
 - * Alphabetizing is mechanical, so our algorithm is effective
 - * Finiteness is satisfied because there are only a finite number of slots that can be paired, so instructions 4, 5, and 6 cannot be repeated indefinitely



A Deeper Analysis

Structural features

- * Two instructions, 5 and 6, in which the agent is directed to go back and repeat instructions. This is called a *loop*.
- * Loops and Tests
 - A loop must include a test to determine whether the instructions should be repeated one more time
- * Assumptions
 - We assume that
 - The CD rack is full (instructions do not handle the case of an empty slot)
 - The word "following" means a slot further from the start point

Figure 10.3. Flowchart of Alphabetize CDs. Operations are shown in rectangles; decisions are shown in diamonds. Arrows indicate the sequencing of the operations.

Exchange Sort Algorithm

- The Alphabetize CDs example illustrates the standard Exchange Sort algorithm
 - * The idea of comparing pairs of items chosen in a particular way, exchanging them if they are out of order, and continuing to sweep through the items
 - We could use the same algorithm to sort on a different principle

Chapter 18 for Friday