
D-1

D-1

CSE 142
Computer Programming I

Arithmetic Expressions

© 2000 UW CSE
D-2

Arithmetic expressions
Integer and floating-point (double) types
Unary and binary operators
Precedence
Associativity
Conversions and casts
Symbolic constants

Reading: Text sec. 2.5.

Overview

D-3

We need precise rules that define exactly
what an expression means:

What is the value of 4 - 4 * 4 + 4?

Arithmetic on a computer may differ from
everyday arithmetic or math:

(1.0 / 9.0) * 9.0 could be 0.99999998213

2 / 3 is zero in C, not .667 (!)

Why Study Expressions?

D-4

double area, radius;

area = 3.14 * radius * radius;

assignment statement expression

Execution of an assignment statement:
Evaluate the expression on the right hand side
Store the value of the expression into the variable
named on the left hand side

Assignment Statement: Review

D-5

Expressions are things that have values
A variable by itself is an expression:
radius
A constant by itself is an expression:
3.14

Often expressions are combinations of
variables, constants, and operators.

area = 3.14 * radius * radius;

Expressions

D-6

Expression Evaluation
Some terminology:

Data or operand means the integer or floating-
point constants and/or variables in the
expression.

Operators are things like addition,
multiplication, etc.

The value of an expression will depend on the
data types and values and on the operators used

Additionally, the final result of an assignment
statement will depend on the type of the
assignment variable.

D-2

D-7

Arithmetic Types: Review
C provides two different kinds of numeric values

Integers (0, 12, -17, 142)
Type int
Values are exact
Constants have no decimal point or exponent

Floating-point numbers (3.14, -6.023e23)
Type double
Values are approximate (12-14 digits precision
typical)
Constants must have decimal point and/or
exponent

D-8

Operator Jargon
Binary: operates on two operands

3.0 * b
zebra + giraffe

Unary: operates on one operand

-23.4

C operators are unary or binary
Puzzle: what about expressions like

a+b+c?
Answer: this is two binary ops, in sequence

D-9

Constants of type double:
0.0, 3.14, -2.1, 5.0, 6.02e23, 1.0e-3
not 0 or 17

Operators on doubles:
unary: -
binary: +, -, *, /
Note: no exponentiation operator in C

Expressions with doubles

D-10

Declarations

double height, base, radius, x, c1, c2;

Sample expressions (not statements):

0.5 * height * base

(4.0 / 3.0) * 3.14 * radius * radius * radius

- 3.0 + c1 * x - c2 * x * x

Example Expressions with
doubles

D-11

Constants of type int:
0, 1, -17, 42

not 0.0 or 1e3

Operators on ints:
unary: -
binary: +, -, *, /, %

Expressions with ints

D-12

Integer operators include integer
division and integer remainder:

symbols / and %

Caution: division looks like an old
friend, but there is a new wrinkle!

int Division and Remainder

2 rem 1
100)299

200

99

2 rem 99
100)299

200

99

D-3

D-13

/ is integer division: no remainder, no rounding
299 / 100
6 / 4
5 / 6

int Division and Remainder

% is mod or remainder:
299 % 100 99
6 % 4 2
5 % 6 5

2
1
0

D-14

Given: total_minutes 359
Find: hours 5

minutes 59

Solution in C:

Expressions with ints:
Time Example

hours = total_minutes / 60 ;
minutes = total_minutes % 60 ;

D-15

int radius;
double volume;
double pi = 3.141596;
.
.
volume = (4/3) * pi * radius *radius * radius;

A Cautionary Example

D-16

Sometimes only ints make sense

the 15th spreadsheet cell, not the 14.997th cell
Doubles may be inaccurate representing “ints”

In mathematics 3 • 15 • (1/3) = 15
But, 3.0 * 15.0 * (1.0 / 3.0) might be 14.9999997

Last, and least
operations with doubles is slower on some
computers
doubles often require more memory

Why Use ints? Why
Not doubles Always?

D-17

Precedence determines the order of evaluation
of operators.
Is a + b * a - b equal to (a + b) * (a - b) or

a + (b * a) - b ??
And does it matter?
Try this:

4 + 3 * 2 - 1

Order of Evaluation

7
9

(4 + 3) * (2 - 1) =
4 + (3 * 2) - 1 =

D-18

Precedence rules:
1. do ()’s first, starting with innermost
2. then do unary minus (negation): -
3. then do “multiplicative” ops: *, /, %
4. lastly do “additive” ops: binary +, -

Operator Precedence Rules

D-4

D-19

Precedence doesn’t help if all the operators have
the same precedence

Is a / b * c equal to

a / (b * c) or (a / b) * c ??

Associativity determines the order among
consecutive operators of equal precedence

Does it matter? Try this: 15 / 4 * 2

Precedence Isn’t Enough

D-20

Associativity determines the order among
consecutive operators of equal precedence

Does it matter? Try this: 15 / 4 * 2

(15 / 4) * 2 = 3 * 2 = 6

15 / (4 * 2) = 15 / 8 = 1

Associativity Matters

D-21

Most C arithmetic operators are “left
associative”, within the same precedence
level

a / b * c equals (a / b) * c
a + b - c + d equals ((a + b) - c) + d

C also has a few operators that are right
associative.

Associativity Rules

D-22

The Full Story...

C has about 50 operators & 18 precedence
levels…

A "Precedence Table" shows all the
operators, their precedence and
associativity.
Look on inside front cover of our

textbook
Look in any C reference manual

When in doubt: check the table
When faced with an unknown operator:

check the table

D-23

Mathematical formula:

- b + √ b2 - 4 a c

2 a

C formula:

(- b + sqrt (b * b - 4.0 * a * c)) / (2.0 * a)

Precedence and
Associativity: Example

D-24

b * b - 4.0 * a * c

Depicting Expressions

-

67.05

-1.0 15.2

*

-4.0

*

-60.8

2.5 2.5

*

6.25

b = 2.5;

a = -1.0;

c = 15.2;

D-5

D-25

What is 2 * 3.14 ?

Compiler will implicitly (automatically) convert int to
double when they occur together:

int + double double + double (likewise -, *, /)

2*3 * 3.14 (2*3) * 3.14 6 * 3.14 6.0 * 3.14 18.84

2/3 * 3.14 (2/3) * 3.14 0 * 3.14 0.0 * 3.14 0.0

We strongly recommend you avoid mixed types:
e.g., use 2.0 / 3.0 * 3.14 instead.

Mixed Type Expressions

D-26

int total, count, value;

double avg;

total = 97 ; count = 10;

avg = total / count; /*avg is 9.0!*/

value = total*2.2; /*bad news*/

Conversions in Assignments

implicit
conversion
to int – drops
fraction with
no warning

implicit
conversion
to double

D-27

Use a cast to explicitly convert the result
of an expression to a different type
Format: (type) expression
Examples (double) myage

(int) (balance + deposit)
This does not change the rules for
evaluating the expression itself (types,
etc.)
Good style, because it shows the reader
that the conversion was intentional, not an
accident

Explicit Conversions

D-28

int total, count ;

double avg;

total = 97 ; count = 10 ;

/* explicit conversion to double (right way)*/

avg = (double) total / (double) count; /*avg is 9.7 */

Using Casts

/* explicit conversion to double (wrong way)*/

avg = (double) (total / count) ; /*avg is 9.0*/

D-29

Named constants:

#define PI 3.14159265
...

circle_area = PI * radius * radius ;

#define - Symbolic Constants

Note: = and ; are not used for #define

D-30

#define PI 3.14159265
#define HEIGHT 50
#define WIDTH 80
#define AREA (HEIGHT * WIDTH)

...
circle_area = PI * radius * radius ;
volume = length * AREA;

Expressions in #define

() can be used in #define
() should be used for any non-simple
expression

D-6

D-31

Centralize changes

No "magic numbers" (unexplained constants)

use good names instead

Avoid typing errors

Avoid accidental assignments to constants

double pi ; vs.
pi = 3.14 ; #define PI 3.14
... ...
pi = 17.2 ; PI = 17.2 ; syntax error

Why #define?

D-32

•Every variable, value, and expression in C
has a type
•Types matter - they control how things
behave (results of expressions, etc.)
•Lots of cases where types have to match up
•Start now: be constantly aware of the type of
everything in your programs!

Types are Important

D-33

•Write in the clearest way possible to help the
reader

•Keep it simple; break very complex expressions
into multiple assignment statements

•Use parentheses to indicate your desired
precedence for operators when it is not clear

•Use explicit casts to avoid (hidden) implicit
conversions in mixed mode expressions and
assignments

•Be aware of types

Advice on Writing Expressions

D-34

We’ll discuss input and output

See you then!

Next Time

