
S-1

S-1

CSE 142
Computer Programming I

Structures

© 2000 UW CSE
S-2

Concepts this lecture

Review: Data structures
Heterogenous structures (structs, records)
struct type definitions (typedef)
Field selection (. operator)
Structs as parameters

Call by value
Pointer parameters and -> operator

S-3

Chapter 11

Read 11.1-11.3, & 11.7

11.1: Structure types

11.2: Structures as parameters

11.3: Structures as return values

Optional examples; skim or read:

11.4: Complex numbers

S-4

Review: Data Structures
Functions give us a way to organize programs.
Data structures are needed to organize data, especially:

1. large amounts of data
2. variable amounts of data
3. sets of data where the individual pieces are related to one

another
Arrays helped with points 1 and 2, but not with point 3

Example: the data describing one house in a neighborhood:
x, y, color, # windows, etc.

Example: information about one student: name, ID, GPA,
etc. etc.

S-5

Problem: Account Records
The Engulf & Devour Credit Co. Inc., Ltd. needs to
keep track of insurance policies it has issued.
Information recorded for each policy

Account number (integer)
Policy holder’s age (integer) and sex (‘m’ or ‘f’)
Monthly premium (double)

At E&G, customers are only known by their
account #, so there is no need to store their
names.

S-6

Structs: Heterogeneous Structures

C expressions:

alice.age is 23

alice.sex is 'f'

2*alice.premium is 84.34

“alice”
account 9501234
age 23
sex 'f'
premium 42.17

Collection of values of possibly differing types.

Name the collection; name the components
(fields).

Example: Insurance policy information for Alice
(informally)

S-2

S-7

Defining structs
There are several ways to define a struct

in a C program. For this course:
Define a new type specifying the fields

in the struct
Declare variables as needed using that

new type
The type is defined only once at the

beginning of the program
Variables with this new type can be

declared as needed.
S-8

Defining struct types
typedef struct { /* record for one policy:*/

int account; /* account number */
int age; /* policy holder’s age */
char sex; /* policy holder’s sex */
double premium; /* monthly premium */

} account_record;

Defines a new data type called account_record.

Does not declare (create) any variables. No storage is
allocated.

S-9

Style Points in struct types
In a type definition, use comments to describe
the fields,

not the contents of the fields for any
particular variable
I.e., describe the layout of an
account_record, not information about
Alice’s account.

typedefs normally are placed at the top of the
program file

S-10

Declaring struct Variables

Follow the usual rules:
write the type name followed by one or more
variable identifiers
Only difference: this time the type is defined
by the programmer, not built in

S-11

/*typedef students_record
goes at top of program */

...

account_record alice;
account_record bob;

account_record is a type;
alice and bob are variables.

Both variables have the
same internal layout

Declaring struct Variables

account
age
sex

premium

alice

account
age
sex

premium

bob

S-12

A fundamental operation on
struct variables is field access:

struct_name.field_name
selects the given field
(variable) from the struct

alice.age = 23;
alice.premium = 12.20;
alice.premium = 2 *

alice.premium;

Field access

account
age
sex

premium

alice

23

12.20-------- 24.40

S-3

S-13

A selected field is an
ordinary variable - it can
be used in all the usual
ways

alice.age++;
printf("Alice is %d years old\n",

alice.age);
scanf("%lf", &alice.premium);

Field access

account
age
sex

premium

alice

S-14

Terminology

The terms “struct”, “record” and “structure”

mean the same thing

“fields” are often called “components” or

“members”.

S-15

Why use structs?

Collect together values that are treated as a unit
(for compactness, readability, maintainability).

typedef struct {
int hours, minutes;
double seconds;

} time;

typedef struct {
int dollars, cents;

} money;

This is an example of “abstraction”

S-16

Structs as User-Defined Types
C provides a limited set of built-in types: int,
char, double (and variants of these not discussed
in these lectures)
Pointers introduced some new types
Arrays further enrich the possible types available
But... the objects in the real world and in
computer applications are often more complex
than these types allow
With structs, we’re moving toward a way for
programmers to define their own types.

S-17

Some Limitations

Like arrays, there are some restrictions on how a
struct can be used compared to a simple
variable (int, double, etc.)

Can’t compare (==, !=) two structs directly

Can’t read or write an entire struct with
scanf/printf

But you can do these things on individual fields

S-18

struct Assignment

Unlike arrays, entire structs can be copied in a
single operation. Don’t need to copy field-by-
field.

Can assign struct values with =
Can have functions with struct result types,
and can use struct values in a return
statement

S-4

S-19

A struct assignment
copies all of the fields. If
dilbert is another
account_record, then

dilbert = bob;
is equivalent to

dilbert.account =
bob.account;

dilbert.age = bob.age;
dilbert.sex = bob.sex;
dilbert.premium =

bob.premium;

struct Assignment

account
age
sex

premium

dilbert

bob

account
age
sex

premium

12
46532

m

12.95

12
46532

m

12.95

S-20

structs as Parameters

structs behave like all other non-array values
when used as function parameters

Can be call-by-value (copied)
Can use as pointer parameters

S-21

struct initializers

A struct can be given an initial value when it is
declared. List initial values for the fields in the
same order they appear in the struct typedef.

account_record
ratbert = { 970142, 6, ‘?’, 99.95 } ;

S-22

/* Given 2 endpoints of a line,
“return” coordinates of midpoint */

void midpoint(
double x1, double y1,
double x2, double y2,
double *midxp, double *midyp)

{
*midxp = (x1 + x2) / 2.0;
*midyp = (y1 + y2) / 2.0;

}

double ax, ay, bx, by, mx, my;
midpoint(ax, ay, bx, by, &mx, &my);

Midpoint Example Revisited

(x1, y1)

(x2, y2)

(x1+x2) (y1+y2)

2 2
,()

S-23

Better: use a struct to make the concept of a
“point” explicit in the code

typedef struct { /* representation of a point */
double x, y ; /* x and y coordinates */

} point ;
...
point a = {0.0, 0.0}, b = {5.0, 10.0};
point m ;
m.x = (a.x + b.x) / 2.0;
m.y = (a.y + b.y) / 2.0;

Points as structs

S-24

Midpoint with points

/* return point whose coordinates are the
center of the line segment with endpoints
pt1 and pt2. */

point midpoint (point pt1, point pt2) {
point mid;
mid.x = (pt1.x + pt2.x) / 2.0;
mid.y = (pt1.y + pt2.y) / 2.0;
return mid;

}
...
point a = {0.0, 0.0}, b = {5.0, 10.0}, m;
... /* struct declaration and initialization */
m = midpoint (a, b); /* struct assignment */

S-5

S-25

x

y

x

y

a b m

x

y

0.0

0.0

5.0

10.0

main

Execution
point midpoint (

point pt1, point pt2) {
point mid;
mid.x = (pt1.x + pt2.x) / 2.0;
mid.y = (pt1.y + pt2.y) / 2.0;
return mid;

}
...
point a = {0.0, 0.0},

b = {5.0, 10.0}, m;
...
m = midpoint (a, b);

x

y

x

y

pt1 pt2 mid

x

y

5.0

10.0

0.0

0.0

2.5

5.0

2.5

5.0

midpoint

S-26

Midpoint with Pointers

Instead of creating a temporary variable and
returning a copy of it, we could write the function so
it stores the midpoint coordinates directly in the
destination variable.
How? Use a pointer parameter:

void set_midpoint (point pt1, point pt2, point *mid)

point a = {0.0, 0.0}, b = {5.0, 10.0}, m;
set_midpoint (a, b, &m);

Structs behave like all non-array types when
used as parameters.

S-27

Field Access via Pointers
Function set_midpoint needs to access the x and y
fields of its third parameter. How?

void set_midpoint (point pt1, point pt2, point *mid)
…

Field access requires two steps:
1) Dereference the pointer with *
2) Select the desired field with .

Technicality: field selection has higher precedence
than pointer dereference, so parentheses are
needed: (*mid).x

S-28

Midpoint with Pointers
/* Store in *mid the coordinates of the midpoint */
/* of the line segment with endpoints pt1 and pt2 */
void set_midpoint (point pt1, point pt2, point *mid)
{

(*mid).x = (pt1.x + pt2.x) / 2.0;
(*mid).y = (pt1.y + pt2.y) / 2.0;

}

point a = {0.0, 0.0}, b = {5.0, 10.0}, m;
set_midpoint (a, b, &m);

S-29

Execution

void set_midpoint (point pt1,
point pt2, point *mid) {

(*mid).x = (pt1.x + pt2.x) / 2.0;
(*mid).y = (pt1.y + pt2.y) / 2.0;

}
...
point a = {0.0, 0.0},

b = {5.0, 10.0}, m;
...
set_midpoint (a, b, &m); x

y

x

y

a b m

x

y

0.0

0.0

5.0

10.0

x

y

pt1 pt2 mid

x

y

5.0

10.0

0.0

0.0

2.5

5.0

main

set_midpoint

S-30

Pointer Shorthand: ->

“Follow the pointer and select a field” is a very
common operation. C provides a shorthand
operator to make this more convenient.

structp - > component
means exactly the same thing as

(*structp).component

-> is (sometimes) called the “indirect
component selection operator”

S-6

S-31

Pointer Shorthand: ->

Function set_midpoint would normally be written
like this:

/* Store in *mid the coordinates of the midpoint */
/* of the line segment with endpoints pt1 and pt2 */
void set_midpoint (point pt1,

point pt2, point *mid)
{

mid->x = (pt1.x + pt2.x) / 2.0;
mid->y = (pt1.y + pt2.y) / 2.0;

}
S-32

Summary

Structs collect variables (“fields”)
possibly of differing types
each field has a name
. operator used to access

Struct fields follow the rules for their
types

Whole structs can be assigned
An important tool for organizing data

