CSE 142

Computer Programming I

Recursion

Overview

Review
Function calls in C
Concepts
Recursive definitions and functions
Base and recursive cases
Reading
Read textbook sec. 10.1-10.3 \& 10.7
Optional: sec. 10.6 (Towers of Hanoi, a classic example)
Skip sec. 10.4-10.5

Factorial Function

Factorial is an example of a mathematical function that is defined recursively, i.e., it is partly defined in terms of itself.

$$
n!=\left\{\begin{array}{cc}
1 & n \leq 1 \\
n *(n-1)! & \text { otherwise }
\end{array}\right.
$$

Factorial Revisited

We've already seen an implementation of factorial using a loop
int factorial (int \mathbf{n}) \{
int product, \mathbf{i};
product =1;
for ($\mathrm{i}=\mathrm{n}$; $\mathrm{i}>1$; $\mathrm{i}=\mathrm{i}-1$) \{
product $=$ product ${ }^{*} \mathbf{i}$;
\}
$2!$ is $1 * 2$
$3!$ is $1 * 2$
\}

$$
3!\text { is } 1 * 2 *
$$

4! Is $1 * 2 * 3 *{ }^{*} 4_{\text {w. }}$

Factorial, Recursively

But we can use the recursive definition directly to get a different version
/* Compute \mathbf{n} factorial - the product of the first
nintegers, 1 * 2 * 3 * $4 \ldots$...n */
int factorial(int n)\{
int result;
if ($n<=1$)
result = 1;
else
result $=\mathrm{n}$ * factorial($\mathrm{n}-1$); w.
return result;
\}
factorial(4) =
factorial(4) =
4*}\mathrm{ factorial(3) =
4*}\mathrm{ factorial(3) =
4* 3 * factorial(2) =
4* 3 * factorial(2) =
4* 3 * 2 * factorial(1) =
4* 3 * 2 * factorial(1) =
4* 3 * 2 * 1 = int factorial(int
4* 3 * 2 * 1 = int factorial(int
if (}n<=1\mathrm{)
if (}n<=1\mathrm{)
4* 3*2 = result =1;
4* 3*2 = result =1;
4.6=24
4.6=24
resuit = n* factorial(n-1);
resuit = n* factorial(n-1);
return result;
return result;

Function Calls

Answer: there's nothing new here!
Remember the steps for executing a function call in C:
Allocate space for called function's parameters and local variables Initialize parameters
Begin function execution
Recursive function calls work exactly the same way
New set of parameters and local variables for each (recursive) call

What is Recursion?

Definition: A function is recursive if it calls itself

```
int foo(int x) {
    y= foo(...);
}
```

How can this possibly work???

main k 24	```int factorial(int n){ int result; if (}n<=1\mathrm{) result = 1; else result = n * factorial(n-1); return result; } int main(void) { k = factorial(4); ... }```
	w-10

Recursive \& Base Cases

A recursive definition has two parts
One or more recursive cases where the function calls itself
One or more base cases that return a result without a recursive call

There must be at least one base case
Every recursive case must make progress towards a base case

Forgetting one of these rules is a frequent cause of errors with recursion

Autumn 2000

Slides past this point not covered in both lecture sections

Recursive \& Base Cases

$3 \mathrm{~N}+1$ function

$$
\begin{aligned}
f(5) & =1+f(16)=2+f(8)=3+f(4) \\
& =4+f(2)=5+f(1)=6 \\
f(7) & =1+f(22)=2+f(11)=3+f(34) \\
& =4+f(17)=5+f(52)=6+f(26) \\
& =7+f(13)=8+f(40)=9+f(20) \\
& =10+f(10)=11+f(5)=12+f(16) \\
& =13+f(8)=14+f(4)=15+f(2) \\
& =16+f(1)=17
\end{aligned}
$$

A Familiar Search Algorithm

Binary search works if the array is sorted

1. Look for the target in the middle.
2. If you don't find it, you can ignore half of the array, and repeat the process with the other half.
Example: Find first page of pizza listings in the yellow pages
Let's solve this again, recursively

Does This Run Forever?
Check:
Includes a base case? int f(int x) \{

Yes

Recursive calls make progress? Hmmm...
Answer: Not known!!! In tests, it always gets to the base case
eventually, but nobody has been able to prove that this must be so!
if ($x==1$) return 1; else if ($x \% 2=0$) return $1+f(x / 2)$; else return $1+f\left(3^{*} x+1\right)$; \}

Recursive Binary Search
Binary Search
Recursive Algorithm
Iteration vs. Recursion

Binary Search Strategy

$\mathbf{0}$	L	
\mathbf{b}		
$\quad<=x$	$?$	$>x$

Values in b[0..L] <= x
Values in $b[R . n-1]>x$
Values in b[L+1..R-1] are unknown
mid $=(L+R) / 2$
Compare b[mid] and x
Replace either Lor R by mid

Recursive Binary Search

Key idea - do a little bit of work, and make recursive call to do the rest
Binary search has value restricted to a range
Look at midpoint, and decide which half of the range is of interest
Use binary search to find value in reduced range. Recursion.

Recursive Case

Situation while searching

Step: Look at b[(L+R)/2]. Move L or R to the middle depending on test
Each recursive call is given L and R as parameters

Base Case

No remaining unknown area:

We recognize the base case when

$$
L+1==R
$$

The Search Function

The original search problem called for a function with 3 parameters:
int bsearch (int b[], int n, int x);
Our recursive approach requires L and R as parameters
Let's call this function by a different name:
int bsearchHelper (int b[], int L, int R, int \mathbf{x}) \{
$\dddot{3}$

Recursive Search Function
int bsearchHelper (int a[], int L, int R, int x) \{ int mid;
if ($L+1==R$) /*base case*/
return L ;
mid = (L+R)/2; /*recursive case*/
if (a[mid] <=)

$$
\mathrm{L}=\mathrm{mid} ;
$$

else

$$
\mathrm{R}=\mathrm{mid}
$$

return bsearchHelper(a, L, R, x);

Initialization Dilemma

The proper initial values for L and R are:
$L=-1$;
$\mathbf{R}=\mathbf{n}$;
These initializations cannot be inside the bsearchHelper function, since L and R are parameters!

Termination Dilemma

After the base case is reached, we must make the final decision about what value to return: -1 if not found, L if found

This decision cannot be placed inside bsearchHelper!

Non-Recursive Wrapper

int bsearch (int a[], int asize, int \mathbf{x}) \{
int $L=-1$;
int $R=$ asize;
L = bsearchHelper (a, L, R, x); /*kickoff*/
if $(\mathrm{a}[\mathrm{L}]=\mathrm{x}) \quad / \mathrm{*}$ final */ return L ;
else
return -1;
\}

Solution: A "Wrapper" Function

1. It sets the recursion in motion Calls the recursive function with the correct initial parameters
2. After the recursion completes, determines the correct final action

Trace
$\begin{array}{llllllll}-17 & -5 & 3 & 6 & 12 & 21 & 45 & 142\end{array}$
bSearch(a, 8, 5) -1
bsearchHelper(a, -1, 8, 5) 2 bsearchHelper(a, -1, 3, 5)
bsearchHelper(a, 1, 3, 5) 2 bsearchHelper(a, 2, 3, 5) 2

2

Iteration vs. Recursion

Turns out any iterative algorithm can be reworked to use recursion instead (and vice versa).
There are programming languages where recursion is the only choice(!)
Some algorithms are more naturally written with recursion
But naïve applications of recursion can be inefficient

When to Use Recursion?

Problem has one or more simple cases
These have a straightforward nonrecursive solution, and:
Other cases can be redefined in terms of problems that are closer to simple cases
By repeating this redefinition process one gets to one of the simple cases

Recursion Wrap-up

Recursion is a programming technique

It works because of the way function calls and local variables work

Recursion is more than a programming technique

