
W-1

W-1

CSE 142
Computer Programming I

Recursion

© 2000 UW CSE W-2

Overview
Review

Function calls in C
Concepts

Recursive definitions and functions
Base and recursive cases

Reading
Read textbook sec. 10.1-10.3 & 10.7
Optional: sec. 10.6 (Towers of Hanoi, a

classic example)
Skip sec. 10.4-10.5

W-3

Overview
Review

Function calls in C
Concepts

Recursive definitions and functions
Base and recursive cases

W-4

Factorial Function

Factorial is an example of a mathematical
function that is defined recursively, i.e., it is
partly defined in terms of itself.

−
≤

=
otherwisenn

n
n

)!1(*

11
!

W-5

Factorial Revisited

1! is 1
2! is 1 * 2
3! is 1 * 2 * 3
4! Is 1 * 2 * 3 * 4
5! Is 1 * 2 * 3 * 4 * 5
. .

int factorial (int n) {
int product, i ;
product = 1 ;
for (i = n ; i > 1 ; i = i - 1) {

product = product * i ;
}
return product ;

}

We’ve already seen an implementation
of factorial using a loop

W-6

Factorial, Recursively

But we can use the recursive definition directly to
get a different version

/* Compute n factorial – the product of the first
n integers, 1 * 2 * 3 * 4 . . . * n */

int factorial(int n){
int result;
if (n <= 1)

result = 1;
else

result = n * factorial(n - 1);
return result;

}

W-2

W-7

Trace

factorial(4) =

int factorial(int n){
int result;
if (n <= 1)

result = 1;
else

result = n * factorial(n - 1);
return result;

}

4* factorial(3) =

4* 3 * factorial(2) =

4* 3 * 2 * factorial(1) =

4* 3 * 2 * 1 =

4* 3 * 2 =

4* 6 = 24 W-8

What is Recursion?

Definition: A function is recursive if it calls
itself

int foo(int x) {
…
y = foo(…);
…

}

How can this possibly work???

W-9

Function Calls
Answer: there’s nothing new here!

Remember the steps for executing a function
call in C:

Allocate space for called function’s
parameters and local variables

Initialize parameters
Begin function execution

Recursive function calls work exactly the same
way

New set of parameters and local variables for
each (recursive) call

W-10

int factorial(int n){
int result;
if (n <= 1)

result = 1;
else

result = n *
factorial(n - 1);

return result;
}

int main(void) {
…
k = factorial(4);
...

}

kmain

nfactorial result4

nfactorial result3

nfactorial result2

nfactorial result1 11

22

66

2424

24

Trace

W-11

Recursive & Base Cases

A recursive definition has two parts
One or more recursive cases where the

function calls itself
One or more base cases that return a result

without a recursive call

There must be at least one base case
Every recursive case must make progress

towards a base case

Forgetting one of these rules is a frequent
cause of errors with recursion

W-12

Autumn 2000

Slides past this point not
covered in both lecture sections

W-3

W-13

Recursive & Base Cases

Base case

Recursive case

int factorial(int n){
int result;
if (n <= 1)

result = 1;
else

result =
n * factorial(n - 1);

return result;
}

W-14

Does This Run Forever?
Check:

Includes a base case?
Yes

Recursive calls make
progress? Hmmm…

int f (int x) {
if (x == 1)

return 1;
else if (x % 2 == 0)

return 1 + f(x/2);
else

return 1 + f(3*x + 1);
}

Answer: Not known!!!
In tests, it always gets
to the base case
eventually, but nobody
has been able to prove
that this must be so!

W-15

3N + 1 function

f(5) = 1 + f(16) = 2 + f(8) = 3 + f(4)

= 4 + f(2) = 5 + f(1) = 6

f(7) = 1 + f(22) = 2 + f(11) = 3 + f(34)
= 4 + f(17) = 5 + f(52) = 6 + f(26)
= 7 + f(13) = 8 + f(40) = 9 + f(20)
= 10 + f(10) = 11 + f(5) = 12 + f(16)
= 13 + f(8) = 14 + f(4) = 15 + f(2)
= 16 + f(1) = 17

W-16

Recursive Binary Search
Binary Search
Recursive Algorithm
Iteration vs. Recursion

W-17

A Familiar Search Algorithm

Binary search works if the array is sorted
1. Look for the target in the middle.
2. If you don’t find it, you can ignore

half of the array, and repeat the
process with the other half.

Example: Find first page of pizza listings
in the yellow pages

Let’s solve this again, recursively W-18

Binary Search Strategy

Values in b[0..L] <= x
Values in b[R..n-1] > x
Values in b[L+1..R-1] are unknown

<= x > x?

0 L R n

b

mid = (L + R) / 2

Compare b[mid] and x

Replace either L or R by mid

W-4

W-19

Recursive Binary Search

Key idea – do a little bit of work, and
make recursive call to do the rest

Binary search has value restricted to a
range

Look at midpoint, and decide which half
of the range is of interest

Use binary search to find value in
reduced range. Recursion. W-20

Base Case
No remaining unknown area:

<= x > x

0 L R n

b

We recognize the base case when
L+1 == R

W-21

Recursive Case

<= x > x?

0 L R n

b

Situation while searching

Step: Look at b[(L+R)/2]. Move L or R
to the middle depending on test

Each recursive call is given L and R as
parameters

W-22

The Search Function
The original search problem called for a function

with 3 parameters:
int bsearch (int b[], int n, int x);

Our recursive approach requires L and R as
parameters

Let’s call this function by a different name:

int bsearchHelper (int b[], int L, int R, int x) {
...
}

<= x > x?
0 L R n

b

W-23

Recursive Search Function

int bsearchHelper (int a[], int L, int R, int x) {
int mid;
if (L+1 == R) /*base case*/

return L;

mid = (L+R)/2; /*recursive case*/
if (a[mid] <= x)

L = mid;
else

R = mid;
return bsearchHelper(a, L, R, x);

}

W-24

Initialization Dilemma
The proper initial values for L and R are:
L = -1;
R = n;

These initializations cannot be inside the
bsearchHelper function, since L and R
are parameters!

W-5

W-25

Termination Dilemma
After the base case is reached, we must

make the final decision about what
value to return: -1 if not found, L if
found

This decision cannot be placed inside
bsearchHelper!

<= x > x
0 L R n

b
W-26

Solution: A "Wrapper" Function
1. It sets the recursion in motion

Calls the recursive function with
the correct initial parameters

2. After the recursion completes,
determines the correct final
action

<= x > x
0 L R n

b

W-27

Non-Recursive Wrapper

int bsearch (int a[], int asize, int x) {
int L = -1;
int R = asize;

L = bsearchHelper (a, L, R, x); /*kickoff*/

if (a[L] == x) /* final */
return L;

else
return -1;

}

W-28

Trace

-17 -5 3 6 12 21 45 142

bSearch(a, 8, 5)
bsearchHelper(a, -1, 8, 5)

bsearchHelper(a, -1, 3, 5)
bsearchHelper(a, 1, 3, 5)

bsearchHelper(a, 2, 3, 5)

-1
2

2
2

2

W-29

Iteration vs. Recursion

Turns out any iterative algorithm can be
reworked to use recursion instead (and vice
versa).

There are programming languages where
recursion is the only choice(!)

Some algorithms are more naturally written with
recursion
But naïve applications of recursion can be

inefficient
W-30

When to Use Recursion?

Problem has one or more simple cases
These have a straightforward nonrecursive

solution, and:
Other cases can be redefined in terms of

problems that are closer to simple cases
By repeating this redefinition process one

gets to one of the simple cases

W-6

W-31

Recursion Wrap-up

Recursion is a programming
technique

It works because of the way
function calls and local variables
work

Recursion is more than a
programming technique

