
R-1

R-1

CSE 142
Computer Programming I

Multidimensional Arrays

© 2000 UW CSE R-2

Overview

Review
1-D arrays

Concepts this lecture:
2-D arrays
2-D arrays as parameters
Layout of 2-D arrays in memory

Reading
Textbook sec. 8.7

R-3

Arrays as Data Structures
Review: An array is an ordered collection
of values of identical type

Name the collection; number the
elements

Arrays are the natural choice for
organizing a large number of values, all of
identical type

R-4

Beyond Simple Arrays
Sometimes the collection of values has
some additional regular pattern or
structure
One common such structure is the matrix
or table
In C, we can express this as a two-
dimensional array
Higher-dimensional arrays (3-D, 4-D, …)
are possible, but we won’t use them in this
course

R-5

2-Dimensional Arrays
An ordered collection of values of identical type
Name the collection; number the elements
Like 1-D arrays, but a different numbering scheme
Example: scores for 7 students on 4 homeworks

C expressions:

score[0][0] is 22

score[6][3] is 12

2*score[3][0] is 30

25
20
24
13
25
21
12

student 0
student 1
student 2
student 3
student 4
student 5
student 6

22
12

5
15

2
25

8

15
12
17
19
0

22
4

25
25
25
25
25
24
25

hw 0 1 2 3score

R-6

Declaring a 2-D Array

int score [MAX_STUDENTS] [MAX_HWS] ;

#define MAX_STUDENTS 80

#define MAX_HWS 6

...

R-2

R-7

2-D Arrays: Terminology

type name[#rows][#columns]

int score[80][6];

score is a two-dimensional array of int of
size 80 by 6

score[0][0], score[0][1], , score[79][5]
are the elements of the array

R-8

An Alternate View

int score[80][6];

We could also view each row as an
element:

“score is an array of size 80”

With this view, each element (row) is a 1-D
array, of type “array of size 6 of int”

R-9

Bookkeeping
As with 1-D arrays, often we only use part
of the space available in a 2-D array

Declared size of the array specifies its
maximum capacity.

The current size (# of rows and columns
currently in use) needs to be kept track of
in separate variables

R-10

Reading in Data

Problem: Read in data for student assignments

Input data format: The number of students, then
the number of assignments, followed by the data
per student

A nested loop is the right program structure for
reading in the data details

int score [MAX_STUDENTS] [MAX_HWS] ;
int nstudents, nhws, i, j ;

R-11

Reading a 2-D Array: Code
/* Read the number of students and assignments,

then loop to read detailed data */

scanf ("%d %d", &nstudents, &nhws) ;
if (nstudents <= MAX_STUDENTS &&

nhws <= MAX_HWS) {

for (i = 0 ; i < nstudents ; i = i + 1)

for (j = 0 ; j < nhws ; j = j + 1)

scanf("%d", &score [i] [j]) ;

}

Part of the array is unused; which part?

R-12

Array Input Trace

score j= 0 1 2 3 4 5 ...
i=0
i=1
i=2
...
i=6
i=7

Input: 7 4 0 1 2 3 4 5 6 7 8 9 ...

0 1 2 3 ? ? ...
4 5 6 7 ? ? ...
8 9 ...

...
…
? ? ? ? ...

R-3

R-13

Printing a 2-D Array
if (nstudents <= MAX_STUDENTS &&

nhws <= MAX_HWS) {

for (i = 0 ; i < nstudents ; i = i + 1) {

for (j = 0 ; j < nhws ; j = j + 1)

printf("%d", score [i] [j]) ;

printf("\n") ;

}

} R-14

2-D Arrays as Parameters
Same as 1-D arrays (almost):
Individual array elements can be either value or

pointer parameters
Entire arrays are always passed as pointer

parameters - never copied
Don’t use & and * with entire array parameters

Difference:
No empty brackets [] in formal parameters
Actually, [] allowed sometimes; we won’t use in

this course

R-15

2-D Array As Parameter
A function to read into array a the grade
information for the given number of students and
assignments

void read_2D (int a [MAX_STUDENTS] [MAX_HWS],
int nstudents, int nhws)

{...

R-16

2-D Array As Parameter
/* Read into array a the grade information for */
/* the given number of students and assignments */

void read_2D (int a [MAX_STUDENTS] [MAX_HWS] ,
int nstudents, int nhws)

{
int i, j ;
for (i = 0 ; i < nstudents ; i = i + 1)

for (j = 0 ; j < nhws ; j = j + 1)
scanf("%d", &a[i][j]) ;

}

R-17

Array Function Arguments
int main(void)
{

int score [MAX_STUDENTS] [MAX_HWS] ;
int nstudents, nhws ;

scanf (“%d %d”, &nstudents, &nhws) ;
if (nstudents <= MAX_STUDENTS &&

nhws <= MAX_HWS)
read_2D (score, nstudents, nhws) ;

...
} no &

R-18

Example - Digital Image

A digital image is a rectangular grid of pixels

Pixel representation: integer value giving
brightness from 0 (off) to 255 (full on)
Black & White: one int per pixel
Color: 3 ints per pixel - one each for red,

green, and blue

An image is normally stored as a 2D array

R-4

R-19

Problem - Shift Image
Write a function that
shifts a B&W image
right one pixel
Strategy: shift columns
one at a time
To shift a column, shift
its pixels 1 row at a
time

876543210

11
10
9
8
7
6
5
4
3
2
1
0

R-20

A couple of definitions

/* Number of rows and columns in image */
#define NROWS 768
#define NCOLS 1024

/* Representation of a white pixel */
#define WHITE 255

R-21

Code
/* Shift image right one column */
void shift_right(int image[NROWS][NCOLS]) {

int row, col;

/* shift all columns */
for (col = …) {

/* shift column col one space to the right */
for (row = 0; row < NROWS; row++)

image[row][col+1] = image[row][col];
}

/* set leftmost column to white */
for (row = 0; row < NROWS; row++)

image[row][0] = WHITE;
}

R-22

Column Sequence
Question: Does it matter if we shift from left to
right vs right to left?
Question: What are the correct loop bounds for
col?
0 to NCOLS-1? 0 to NCOLS-2? 1 to NCOLS-1?
Something else?

/* shift all columns */
for (col = …) {

/* shift column col one space to the rigtht */
for (row = 0; row < NROWS; row++)

image[row][col+1] = image[row][col];
}

R-23

876543210

11
10
9
8
7
6
5
4
3
2
1
0

R-24

Order
Answer: Yes it does. If we shift from left to right,
we wind up making copies of column 0 in every
column of the image. Correct code looks like
this.

/* shift all columns */
for (col = NCOLS - 2; col >= 0; col--) {

/* shift column col one space to the rigtht */
for (row = 0; row < NROWS; row++)

image[row][col+1] = image[row][col];
}

R-5

R-25

Image Scrolling

Finally, we can use our function to scroll an image
completely off the screen

int main(void) {
int image[NROWS][NCOLS]; /* the image */
int k;

/* assume image is initialized elsewhere */
…
/* scroll image completely off the screen */
for (k = 0; k < NCOLS; k++)

shift_right(image);

return 0;
} Note: no & (it’s an array) R-26

Representation of Arrays

A computer’s memory is a one
dimensional array of cells

How is a 2-D array stored?
Answer: In C, the array rows are stored

sequentially: row 0, 1, 2, …

R-27

Representation of Arrays

student 0 student 1 student 2

1315 25 25 ? ? 12 12 25 20 ? ? 5 17 25 24 ? ? 15 ...

score hw 0 1 2 3 4 5

student 0 13 15 25 25 ? ?
student 1 12 12 25 20 ? ?
student 2 5 17 25 24 ? ?
student 3 15 19 25 13 ? ?
student 4 2 0 25 25 ? ?
student 5 25 22 24 21 ? ?
student 6 8 4 25 12 ? ?
student 7 ? ? ? ? ? ?

R-28

Summary

2-D arrays model matrices or tables of
data

Notation and use is an extension of 1-D
arrays

Nested loops are often the natural
processing technique

