
C-1

C-1

CSE 142
Computer Programming I

Variables

© 2000 UW CSE
C-2

Overview

Concepts this lecture:
Variables
Declarations
Identifiers and Reserved Words
Types
Expressions
Assignment statement
Variable initialization

C-3

Review: Computer Organization

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk

Keyboard
mouse

C-4

Review: Memory

Memory is a collection of locations

Within a program, the locations are called variables

Each variable has
A name (an identifier)
A type (the kind of information it can contain)

Basic types include
int (integers – whole numbers: 17, -42)
double (floating-point numbers with a fraction or exponent
or both: 3.14159, 6.02e23)
char (character data: 'a', '?', 'N', ' ', '9')

C-5

Memory example
Variable declarations in C

int i = 12;
double gasPrice = 1.799;
char bang = ’!’;

Picture: i

gasPrice

bang

12

1.799

’!’

(int)

(double)

(char)

C-6

Declaring Variables
int months;

Integer variables represent whole numbers:
1, 17, -32, 0 Not 1.5, 2.0, ’A’

double pi;
Floating point variables represent real numbers:
3.14, -27.5, 6.02e23, 5.0 Not 3

char first_initial, middle_initial, marital_status;

Character variables represent individual keyboard
characters:
’a’, ’b’, ’M’, ’0’ , ’9’ , ’#’ , ’ ’ Not "Bill"

C-2

C-7

Variable Names
"Identifiers" are names for things in a program

for examples, names of variables
In C, identifiers follow certain rules:

use letters, numerals, and underscore (_)
do not begin with a numeral
cannot be “reserved words”
are "case-sensitive"
can be arbitrarily long but...

Style point: Good choices for identifiers can be
extremely helpful in understanding programs

Often useful: noun or noun phrase describing
variable contents C-8

Reserved words

Certain identifiers have a "reserved" (permanent,
special) meaning in C
We’ve seen int already
Will see a couple of dozen more eventually

These words always have that special meaning, and
cannot be used for other purposes.
Cannot be used names of variables
Must be spelled exactly right
Sometimes also called “keywords”

C-9

Under the Hood
All information in the CPU or memory is actually a
series of bits: 1’s and 0’s

Known as binary data
Amazingly, all kinds of data can be represented in
binary: numbers, letters, sounds, pictures, etc.

The type of a variable specifies how the bits are
interpreted

Normally we ignore the underlying bits and work
with C types

01010001

Binary

10.73double

’A’char

161int

(sample) valueC type

C-10

Assignment Statements

int area, length, width;
length = 16;
width = 32;
area = length * width;

An assignment statement stores a value into a
variable.
The assignment may specify a simple value to be
stored, or an expression

Execution of an assignment statement is done in
two distinct steps:

Evaluate the expression on the right hand side
Store the value of the expression into the
variable named on the left hand side

/* declaration of 3 variables */
/* "length gets 16" */
/* "width gets 32" */
/* "area gets length times width" */

C-11

my_age = my_age+1
This is a “statement”, not an equation. Is there a
difference?
The same variable may appear on both sides of
an assignment statement

my_age = my_age + 1 ;
balance = balance + deposit ;

The old value of the variable is used to compute
the value of the expression, before the variable is
changed.
It’s not the same as in algebra!

C-12

Program Execution

A memory location is reserved by declaring a
C variable

You should give the variable a name that
helps someone else reading the program
understand what it is used for in that
program

Once all variables have been assigned
memory locations, program execution begins

The CPU executes instructions one at a time,
in order of their appearance in the program
(we will introduce more options later)

C-3

C-13

An Example

/* calculate and print area of 10x3 rectangle */
#include <stdio.h>
int main(void) {

int rectangleLength;
int rectangleWidth;
int rectangleArea;
rectangleLength = 10;
rectangleWidth = 3;
rectangleArea = rectangleLength * rectangleWidth ;
printf("%d", rectangleArea);
return 0;

} C-14

Hand Simulation (Trace)
A useful practice is to simulate by hand the
operation of the program, step by step.

This program has three variables, which we can
depict by drawing boxes or making a table

We mentally execute each of the instructions, in
sequence, and refer to the variables to determine
the effect of the instruction

C-15

Tracing the Program

??10after
statement 1

???after
declaration

rectangleArearectangleWidthrectangleLength

C-16

Tracing the Program

30310after
statement 3

?310after
statement 2

??10after
statement 1

???after
declaration

rectangleArearectangleWidthrectangleLength

C-17

Initializing Variables
Initialization means giving something a
value for the first time.

Anything which changes the value of a
variable is a potential way of initializing it.

For now, that means an initial
value in a declaration or an
assignment statement

C-18

Initialization Rule
General rule: variables have to be
initialized before their value is used.

Failure to initialize...
is a common source of bugs
is a semantic error, not a syntax
error

Variables in a C program are not
automatically initialized to 0!

C-4

C-19

Declaring vs Initializing
int main (void) {

double income; /*declaration of income, not an
assignment or initialization */

income = 35500.00; /*assignment to income,
initialization of income,
not a declaration.*/

printf ("Old income is %f", income);
income = 39000.00; /*assignment to income, not a

declaration,or initialization */
printf ("After raise: %f", income);

return 0;
}

C-20

Example Problem:
Fahrenheit to Celsius
Problem (specified):

Convert Fahrenheit temperature to Celsius

Algorithm (result of analysis):

Celsius = 5/9 (Fahrenheit - 32)

What kind of data (result of analysis):

double fahrenheit, celsius;

C-21

Fahrenheit to Celsius (I)
An actual C program
#include <stdio.h>
int main(void)
{

double fahrenheit, celsius;

celsius = (fahrenheit - 32.0) * 5.0 / 9.0;

return 0;
} C-22

Fahrenheit to Celsius (II)
#include <stdio.h>

int main(void)
{

double fahrenheit, celsius;
printf("Enter a Fahrenheit temperature: ");
scanf("%lf", &fahrenheit);
celsius = (fahrenheit - 32.0) * 5.0 / 9.0;
printf("That equals %f degrees Celsius.",

celsius);
return 0;

}

C-23

Running the Program

Enter a Fahrenheit temperature: 45.5
That equals 7.500000 degrees Celsius

Program trace
fahrenheit celsius

after declaration ? ?
after first printf ? ?
after scanf 45.5 ?
after assignment 45.5 7.5
after second printf 45.5 7.5

C-24

celsius = (fahrenheit-32.0) * 5.0 / 9.0 ;

1. Evaluate right-hand side
a. Find current value of fahrenheit 72.0
b. Subtract 32.0 40.0
b. Multiply by 5.0 200.0
c. Divide by 9.0 22.2

2. Assign 22.2 to be the new value of celsius

(the old value of celsius is lost.)

Assignment step-by-step

C-5

C-25

Fahrenheit to Celsius (III)
#include <stdio.h>

int main(void)
{

double fahrenheit, celsius;
printf("Enter a Fahrenheit temperature: ");
scanf("%lf", &fahrenheit);
celsius = fahrenheit - 32.0 ;
celsius = celsius * 5.0 / 9.0 ;
printf("That equals %f degrees Celsius.",

celsius);
return 0;

}
C-26

Does Terminology Matter?
Lots of new terminology today!

"variable", "reserved word",
"initialization", "declaration",
“statement”, "assignment", etc., etc.

You can write a complicated program without
using these words
But you can’t talk about your programs
without them!
Learn the exact terminology as you go, and
get in the habit of using it.

C-27

Next Lecture: Expressions

Each lecture builds on the previous ones,
so... be sure you’re solid with this material
before going on!

