
D-1

D-1

CSE 142
Computer Programming I

Arithmetic Expressions

© 2000 UW CSE
D-2

Types
Numbers aren’t number
Conversions and casts
Mixed Type Expressions

Arithmetic expressions
Precedence
Associativity

Functions
Unary and binary operators
Symbolic constants

Reading: Text sec. 2.5.

Overview

D-3

Numbers Aren’t Numbers
Remember:

C distinguishes integers (int’s) from real numbers (double’s)

double total
double count;
int average;

/* Initialization */

total = 97.0 ;
count = 10.0;

/* Some assignment statements */

average = total / count;

warning C4244: '=' : conversion from 'double ' to 'int ', possible loss of data

This is backwards from
what you’d probably
actually do

D-4

Implicit vs Explicit Conversion

double total
double count;
int average;

/* Initialization */

total = 97.0 ;
count = 10.0;

/* Some assignment statements */

average = (int)(total / count);

C implicitly converts between int’s and double’s

You should explicitly convert, to show you mean it.

This is called an explicit type cast

warning C4244: '=' :
conversion from
'double ' to 'int ',
possible loss of

data

D-5

Why Was Explicit Conversion
Required?

average = total / count;

double = int / int;

Evaluate

Assign

C has two different division operators, both written ‘/’

int / int →→→→ integer division

double / double →→→→ real-number division

Int / double →→→→ ?

double / int →→→→ ? D-6

Mixed Type Expressions

int / double →→→→ ?
double / int →→→→ ?

If either operand is double, then the
operator is double. An implicit conversion
of the other operand takes place.

double total
int count;
double average;

/* Initialization */

total = 97.0 ;
count = 10;

/* Some assignment statements */

average = total / count;
implicitly

average = total / (double)count;

C implicitly converts an int to a double for all mixed type
operations: +, -, *, /

D-2

D-7

Mixed Type Expressions
------ average;
------ total
int count;

/* Initialization */

total = 97 ;
count = 10;

average = total / count ;

9.7

9.7

9

9

Expression
Value

int

double

int

double

Type of
average

double

double

int

int

Type of
total

9average = (int)(total/(double)count);

9.7average = total/(double)count;

average = total / count;

average = (double)(total / count);

Equivalent Explicit Cast

9

9.0

Final Value
of average

D-8

Explicit Casts

You should perform explicit casts, within reason

At a minimum, no
warning C4244: '=' : conversion from 'double ' to 'int ', possible loss of data

D-9

Sometimes only int’s make sense:
The 15th spreadsheet cell, not the 14.997th cell

Double’s may be inaccurate:
In mathematics 3 • 15 • (1/3) = 15
But, 3.0 * 15.0 * (1.0 / 3.0) might be 14.9999997
(Of course, in C 3*15*(1/3) is 0!)

Why Use int’s?
Why Not double’s Always?

D-10

Why Study Expressions?

10 + 8 * 6 - 3 = ?

10510 + 8 * 6 - 3 =

5410+8 * 6-3 =

5510 + 8*6 - 3 =

D-11

You can always make it completely clear what
you mean using parentheses:

Removing Ambiguity:
Parentheses

105(((10+8)*6)–3) =

54((10+8)*(6-3)) =

55((10+(8*6))-3) =

• Easy for a computer to understand.
• Not so easy for a human to understand.
• Not so easy for a human to type -> lots of errors. D-12

Removing Ambiguity:
Operator Precedence

Precedence indicates “how urgent” an operator is.

Given a choice, higher precedence operators are
evaluated first.

* and / are higher precedence than + and –

(…) is higher precedence than everything else

So 10 + 8 * 6 - 3 is equivalent to 10+(8*6)-3 = 55, but
(10+8)*6-3 is 105

D-3

D-13

Operator Precedence Examples

32 – 8 * 3 is 8
12 + 4 / 2 is 14
22 / 7 + 3 * 4 is 15
2 + 32 / 4 * 2 is 18
2 + 32 / (4 * 2) is 6

()
*, /
+, -

Higher

Lower

D-14

Precedence doesn’t help if all the operators have
the same precedence

Is a / b * c equal to

a / (b * c) or (a / b) * c ??

Associativity determines the order among
consecutive operators of equal precedence

Does it matter? Try this: 15 / 4 * 2

Precedence Isn’t Enough

D-15

Most C arithmetic operators are “left
associative” within the same precedence
level

a / b * c equals (a / b) * c
a + b - c + d equals ((a + b) - c) + d

(C also has a few operators that are right
associative.)

Associativity Rules

D-16

Other Operators: Unary Minus
Binary operator: operates on two operands

3.0 * b
zebra + giraffe

Unary operator: operates on one operand
-23.4

Unary minus applies to int’s and double’s, to literals and to
variables

-zebra

Unary minus has precedence higher than * and /

D-17

/ is integer division: no remainder, no rounding

299 / 100

6 / 4

5 / 6

Other Operators: mod

% is mod or remainder:

299 % 100

6 % 4

5 % 6

2
1
0

99
2
5

mod has precedence
equal to * and /

D-18

Given: totalMinutes 359
Find: hours (5)

minutes (59)

Solution in C:

Expressions with mod:
Time Example

hours = totalMinutes / 60 ;
minutes = totalMinutes % 60 ;

D-4

D-19

The Full Story...

C has about 50 operators & 18 precedence levels…

A "Precedence Table" shows all the operators, their precedence
and associativities.

Look on inside front cover of our textbook

Look in any C reference manual

When in doubt: check the table

When in doubt: use parentheses

D-20

Write in the clearest way possible to help the reader

Keep it simple; break very complex expressions into
multiple assignment statements

Use parentheses to indicate your desired precedence
for operators when it is not clear

Use explicit casts to avoid (hidden) implicit conversions
in mixed mode expressions and assignments

Be aware of types

Advice on Writing Expressions

D-21

C includes functions for additional calculations that are
not available using operators like +, -, *, /, etc.

rootOfTwo = sqrt(2.0);

x = 2.1 * sin(theta/1.5) + 17.0;

eightyOne = pow(3.0, 4.0);

Functions can be used in expressions just like
constants or variables, with two caveats…

Other “Operators”: Functions

D-22

To use these (particular) functions, you have to tell the compiler
where to find out about them:

#include <math.h>

int main(void) {

…

result = sqrt(2.0) / 10;

…

The #include line tells the compiler what it needs to know at
compile time: what is the type of the value provided by the sqrt()
function?

Functions and #include

Description (but not
code) of sqrt(), pow(),
etc.

D-23

Functions and Libraries

The #include line tells the compiler about the functions.

The linker needs to find the machine code (.obj file) for the
functions.

(Standard) C functions are actually organized into libraries.

The development environment (e.g., MSVC or CodeWarrior)
(usually) knows how to find these libraries (but if it doesn’t,
you will get a linker error).

D-24

Symbolic Constants

Generally speaking, a value that “could
change” should not be written as a literal in
your program.

Example: Suppose you’re writing a program to
compute the number of doughnuts and coffee to
order for each meeting of CSE142. An average
person eats 1.3 doughnuts and drinks 5 ounces of
coffee. There are 252 students in the class.

You should not write:

totalDoughnuts = 252 * 1.3;
totalCoffeeInOunces = 252 * 5;

Why?
What should you do?

D-5

D-25

What Should You Do?
#include <stdio.h>

int main(void)
{

int NUMBER_OF_STUDENTS = 252;
double DOUGHNUTS_PER_STUDENT = 1.3;
double COFFEE_PER_STUDENT = 5.0;

…

totalDoughnuts = NUMBER_OF_STUDENTS * DOUGHNUTS_PER_STUDENT;
totalCoffeeInOunces = NUMBER_OF_STUDENTS * COFFEE_PER_STUDENT;

}
Notes:

• Initialization takes place on the declaration line.
• Names in all caps indicates “This is a constant – I shouldn’t be
assigning to it after the declaration.”

• These are just “conventions” – C doesn’t make you follow
these rules; they help the (human) reader.

D-26

Why?

Centralize changes:

If you later want to change the value, you have to edit exactly one
line (not hundreds)

No "magic numbers“:

A reader looking at your code sees the logical idea of what you’re
doing, not numbers that could be anything (and don’t matter to
understanding the correctness of the program)

Reduce the chance that you have a bug due to a mistyped constant
value

D-27

Literal Constants in Your Code

Some constants will likely appear in your code, but only in
special circumstances.

I’ve written a program that grades exams, and counts the
number of exams it has finished so far:

totalGraded = totalGraded + 1;

I wouldn’t define a symbolic constant for the literal 1:

• The value of 1 is never going to change

• The logical intent of what I’m doing (incrementing by
1) is clearer with the literal than by creating a symbolic
constant named ONE

0 is another commonly appearing literal. Almost nothing else
is. (Sometimes –1, sometimes 2, but it’s rare.)

PENNIES_PER_DOLLAR?

D-28

Style Wars
• How to implement symbolic constants is a matter of style.

• Whether or not to use them is not a matter of contention.

• The “usual convention” in C is to use a mechanism called
“#define”. (The 9:30 class is doing that.)

• We’re moving into the mid-1990’s with this convention, which
has some clear advantages.

• We’ll talk about #define later, when we’re able to understand
better what it is and what it isn’t, and deal with the mayhem it
has a tendency to cause.

D-29

We’ll discuss input and output

See you then!

Next Time

