
E-1

E-1

CSE 142
Computer Programming I

Input and Output (I/O)

© 2000 UW CSE E-2

Overview

Topics
Output: printf
Input: scanf
Basic format codes
More on initializing variables

E-3

Writing Useful Programs

It’s hard to write useful programs using only 
variables and assignment statements

Even our Fahrenheit to Celsius program 
needed more:
Needed a way to get data into and out of the 
program

We’ll learn more about doing this today
Lots of terminology and messy details, but 
worthwhile.

E-4

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk (Files)

Keyboard mouse

What’s a Computer?

E-5

Input: movement of data into memory from 
outside world (e.g., from keyboard).

Changes the value of a variable
“read” operation

Output: movement of data from memory to 
outside world (e.g., to monitor)

“write” operation
Does not change value of memory

Basic Definitions

E-6

Text Output



E-2

E-7

printf("Enter a Fahrenheit temperature: ");

scanf("%lf",  &fahrenheit);

celsius =  (fahrenheit - 32.0) * 5.0 / 9.0;

printf("That equals %f degrees Celsius.",
celsius);

I/O Statements from a Familiar 
Program

E-8

The functions printf and scanf provide basic 
display I/O services.

printf("control string", list of expressions) ;

scanf("control string", list of &variables) ;

Control string gives the format of output or input.

Expressions are what to output.

Variables are where to store the input.

‘&’ is magic (that is REQUIRED for scanf!)

Display Input and Output

E-9

int numPushups;

numPushups = 5 ;
printf("Hello.  Do %d pushups. \n", numPushups);

output:  Hello.  Do 5 pushups.

%d is a placeholder (“conversion character”) for an 
int value.

\n is an escape sequence for “newline” character.

printf( ):  Display Output

E-10

int numPushups;

numPushups= 5 ;
printf("Hello.");
printf("  Do %d pushups. \n", numPushups);
printf("Do them now. \n");

output: Hello.  Do 5 pushups.
Do them now.

What Does the ‘\n’ Do?

E-11

printf("control string", list of expressions) ;

printf might have more than one expression in 
its list:

printf("%d times %f is %f. \n",
multiplier , pi , (double) multiplier * pi);

Getting a Little Fancier

E-12

% placeholders in format string match 
expressions in output list in number, order, and 
type.

int multiplier;
double pi;
pi = 3.14;
multiplier = 2;
printf(" %d times %f is %f. \n",

multiplier , pi , (double) multiplier * pi );

Output: 2 times 3.14000 is 6.28000.

Multiple Output Expressions



E-3

E-13

Advanced Output Formatting
This is only the beginning! A few of many other 

things you can do:
Control number of decimals

3.1  vs  3.100000
Exponential (scientific) or decimal notation

3.1  vs  3.1E0 
Control total width (including spaces)

_______3.1 vs __3.1
How? 
Look in textbook or a reference manual, or 
online help!

E-14

Output  Format  Examples
%10.2f    _ _ _ _ 1 2 3 . 5 5         double
%10.4f    _ _ 1 2 3 . 5 5 0 0
%.2f        1 2 3 . 5 5 
%10d      _ _ _ _ _ _ _ 4 7 5         int
%-10d     4 7 5 _ _ _ _ _ _ _
%10c      _ _ _ _ _ _ _ _ _ a         char

E-15
input list variables MUST  be preceded by an &.

scanf ( "control string", &input list ) ;

int numPushups ;

printf ( "Hello.  Do how many pushups? " ) ;
scanf ( " %d " ,  &numPushups) ;
printf ( "Do  %d  pushups.\n",  numPushups) ;

output: Hello.  Do how many pushups?  5
Do  5  pushups.

input list variables MUST  be preceded by an &.

scanf( ):  Read Input

E-16

If You Forget the ‘&’

The program will compile, but when you execute...

E-17

space (’  ’), tab (’\t’), newline (’\n') are “whitespace”

Whitespace is skipped by scanf for int ("%d"), and  
double ("%lf")

This means the user can type spaces before a 
number and they are ignored

Not skipped for char input "%c"

each character typed, including spaces and 
newlines, are read separately

Whitespace

E-18

Basic rule: 

% placeholders in the format must match 
variables in the input list

MUST! match one-for-one in number, order,
and type.
int studentID ;
double grade ;

scanf (" %d %lf", &studentID , &grade ) ;

Multiple Inputs



E-4

E-19

Input Errors

What happens if the user doesn’t type the 
right thing for scanf?

Number with a decimal point when
integer expected…

Character when number expected…

Answer: scanf halts - doesn’t change 
corresponding variables

Can we detect this when it happens?
E-20

Besides storing input values in variables, scanf also 
returns a result that is the number of input values 
successfully read

That result can be used to detect input errors and 
react (once we know a bit more about C)

nValuesRead = scanf("%d %d", &x, &y);
if (nValuesRead != 2) {

/* do something appropriate */
…

}

scanf function result

input stored in x, y

# items actually read

E-21

Type scanf() printf()

char %c %c
int %d %d %i also works

double %lf %f (long) float

What happens if types don’t match?

printf  -- garbled output

scanf  -- unpredictable errors
and don’t forget the & !

Format Items Summary

E-22

Output: printf("control string", output list);
output list – expressions; values to be printed
control string – types and desired format
for now, NO “&”, ever!

Input: scanf("control string", &input list);
input list – variables; values to be read
control string – types and expected format
can be a way of initializing variables

for now, YES “&”, always!
Both: %x’s, I/O list match in number, order, type

printf/scanf Summary

E-23

Input is the movement of data into memory
In C, we use scanf for input from the keyboard

Output is the movement of data from memory
In C, use printf for output to the screen

Know the basic printf/scanf rules, and know them 
well

Be aware that advanced formatting options exist 
and can be looked up when needed

I/O Summary

E-24

Bonus Topic: More on 
Initializing Variables

Review: Initialization means giving 
something a value for the first time.

Potential ways to initialize:
Assignment statement
scanf

Yet another way: initializer with 
declaration



E-5

E-25

Initializers are part of the declaration;
they are not assignment statements (despite the 
= sign).

Declarations without 
initializers

int product, i;

product = 40;
i = 5;

Declarations with 
initializers

int product = 40, i =5;

i = 6; 

Initializing when Declaring

E-26

Initialization Quiz
int main (void) { /*line 1*/

int a, b, c, d=10; /*line 2*/
b=5; /*line 3*/
d=6; /*line 4*/
scanf("%d %d", &b, &c); /*line 5*/
return 0; /*line 6*/

}
Q: Where is each of a, b, c, and d initialized?

E-27

Next Time

We’ll learn about a powerful new type of 
statement, the conditional or “if” 
statement


