CSE 142

Computer Programming I

Conditionals

© 2001 UW CSE
1/17/2001

Related Reading

Read Sections 4.1-4.5, 4.7-4.9
4.1: Control structure preview
4.2: Relational and logical operators
4.3: if statements
4.4: Compound statements
4.5: Example
4.7: Nested if statements

Conditional Control Flow

Choosing which of two (or more) statements to execute before continuing

Choosing whether or not to to skip a statement before continuing

Conditional Execution

A conditional statement allows the computer to choose an execution path depending on the value of a variable or expression

A More Complete Example

In C: if Statement

Conditional Flow Chart
if $(x<100)$ \{
$x=x+1$;
\}
$y=y+x ;$

Conditions

if (condition) \{
statement;

The condition is also called a "logical" or "Boolean" expression
Made up of variables, constants, arithmetic expressions, and the relational operators

$$
\begin{array}{ll}
\text { Math symbols: } & <, \leq>, \geq,=, \neq \\
\text { in C: } & <,<=,>,>=,==,!
\end{array}
$$

Conditional Expressions
airTemperature > 80.0
98.6 <= bodyTemperature
maritalStatus == 'M'
divisor != 0

Such expressions are used in if statements and numerous other places in C .

Value of Conditional Expressions

What is the value of a conditional expression?? Answer: we think of it as TRUE or FALSE

Under the hood in C, it's really an integer:
FALSE $\Leftrightarrow 0(0$ is FALSE and FALSE is 0$)$
Any value other than $0 \Rightarrow$ TRUE
TRUE $\Rightarrow \quad$ (e.g., $(4<7)$ evaluates to 1) \quad F.13

Complex Conditions
if I have at least \$15 or you have at least $\$ 15$, then we can go to the movies
if the temperature is below 32 degrees and it's raining, then it's snowing
if it's not the case that it's Saturday or Sunday, then it's a work day

Complex Conditionals in C

We use Boolean operators to express complex conditionals in C .

We'll say lots more about this later! For now, here is some information for reference.
$\begin{array}{lll}\text { Boolean operators } & \begin{array}{c}\& \& \\ \text { and }\end{array} & \|_{\text {or }} \\ \text { ! not }\end{array}$
int \quad TRUE $=1$;
int FALSE $=0$;
if (myMoney>=15.0 || yourMoney>=15.0) \{ canGoToMovies = TRUE;
\}

Multiple Statements

What if there's more than one conditional action?
"If your temperature is high, then you have a fever, and you should take two aspirin, and you should go to bed, and you should call in sick tomorrow"

Using a Compound Statement

```
if ( temperature > 98.6 ) {
```

if (temperature > 98.6) {
printf("You have a fever. \n");
printf("You have a fever. \n");
aspirin = aspirin -2 ;
aspirin = aspirin -2 ;
printf ("Go to bedln");
printf ("Go to bedln");
printf ("Sleep in tomorrow\n");
printf ("Sleep in tomorrow\n");
}

```

\section*{Another Compound Example}

Cash machine program fragment:
if (balance >= withdrawal) \{
balance = balance - withdrawal; DispenseFunds(withdrawal);
\}
What if () omitted?
What if \(\}\) omitted?

\section*{if...then...else in C \\ Example: Finding Absolute Value}

Problem: Compute the absolute value \(|x|\) of \(x\) and put the answer in variable abs. Here are three solutions, all correct:
\[
\begin{aligned}
& \text { if }(x>=0) \text { \{ } \\
& \text { abs }=x ; \\
& \text { if }(x<0)\{ \\
& \text { abs }=-x ;
\end{aligned}
\]
\}
\[
\text { abs }=x
\]
\[
\text { if }(x<0)\{
\]
\}
abs =-x;
```

if $(x>=0)$ \{
abs $=\mathbf{x}$;
\} else \{
abs $=-x ;$
\}

Nested if Statements

int BILL_SIZE = 20;
if (balance >= withdrawal) \{

$$
\text { balance = balance }- \text { withdrawal ; }
$$

dispense_funds (withdrawal) ;
\} else \{
if (balance >= BILL_SIZE) \{
printf ("Try a smaller amount. In ") ;
\} else \{
printf ("Go away! ln") ;
\}
\}

```
Nested ifs , Part II
    if (x == 5 ) {
        if ( }\textrm{y}==5\mathrm{ ) {
        printf( "Both are 5. \n ");
        } else {
        printf( "x is 5, but y is not. \n ") ;
        }
} else {
        if ( }y==5\mathrm{ ) {
            printf ( "y is 5, but x is not. \n ") ;
        } else {
            printf ( "Neither is 5. \n ") ;
        }
}
```


Cascaded ifs

Tax Table Example
Problem: Print the \% tax based on income:

income	tax
$<15,000$	0%
$15,000,<30,000$	18%
$30,000,<50,000$	22%
$50,000,<100,000$	28%
100,000	31%

One Solution

if (income < 15000) \{ printf("No tax.");
$\}$
income >= 15000 \&\& income < 30000) printf("18\%\% tax.");
\}
come >= 30000 \& printf("22\%\% tax.");
if
income $>=50000$ \& printf("28\%\% tax.");
if
income >=100000) \{ printf("31\%\% tax.");
\}
Mutually exclusive conditions - only one will be true, but that isn't immediately clear to a (human) reader

Cascaded ifs

Warning: Danger Ahead

Pitfalls of if, Part I

```
if (x=10){
    printf( "x is 10");
}
```


Bug! $=$ is used instead of $=$

This is not a syntax error, so the compiler will not report any errors and the program can execute

The World's Last C Bug

status = check_radar ();
if (status = 1) \{
launch_missiles () ;
\}

Pitfalls of if, Part III

Pitfalls of if, Part IV

Beware == and != with doubles:
\& is different from \&\&
| is different from ||
\& and | are not used in this class, but are legal C
If used by mistake, no syntax error, but program may produce bizarre results
double x ;
$x=30.0$ * $(1.0 / 3.0)$;
if $(x==10.0) \ldots$... may or may not be true */

Next Time

We'll be discussing functions, a major topic of the course

