
F-1

F-11/19/01

CSE 142
Computer Programming I

Conditionals

© 2000 UW CSE
F-2

Overview

Concepts this lecture
Conditional execution
if statement
Conditional expressions
Relational and logical operators
{Compound statements}

F-3

Related Reading

Read Sections 4.1-4.5, 4.7-4.9

4.1: Control structure preview

4.2: Relational and logical operators

4.3: if statements

4.4: Compound statements

4.5: Example

4.7: Nested if statements
F-4

Control Flow
“Control flow” is the order in which statements
are executed

Until now, control flow has been sequential -- the
next statement executed is the next one that
appears, in order, in the C program

F-5

Conditional Control Flow

choosing which of two
(or more) statements
to execute before
continuing

choosing whether or not
to to skip a statement
before continuing

F-6

Conditional Execution
A conditional statement allows the computer to choose an

execution path depending on the value of a variable or
expression

if the withdrawal is more than the bank
balance, then print an error

if today is my birthday, then add one to my age

if using whole milk, then add two eggs, otherwise add
three eggs

F-2

F-7

if (condition) {
statement;

}

The statement is executed
if and only if the condition
is true.

if (withdrawalAmount > balance) {

printf("Not enough money\n");

}

if (temperature > 98.6) {
printf("You have a fever.\n");

}

if (x < 100) {
x = x + 1;

}

Conditional ("if ") Statement

F-8

Conditional Flow Chart

if (x < 100) {
x = x + 1 ;

}
y = y + 1;

x < 100 ? x = x + 1 ;

y = y + 1;

yes

no

F-9

Conditions
In parentheses is a condition, also called a

“logical” or “Boolean” expression
Made up of variables, constants,

arithmetic expressions, and the
relational operators

Math symbols: < , ≤, >, ≥ , = , ≠
in C: < ,<=, > , >= , == , !=

F-10

air_temperature > 80.0
98.6 <= body_temperature
marital_status == ’M’
divisor != 0

Such expressions are used in “if” statements
and numerous other places in C.

Conditional Expressions

F-11

Value of Conditional Expressions

What is the value of a conditional
expression??

Answer: we think of it as TRUE or FALSE

Under the hood in C, it’s really an integer
FALSE is 0 (and 0 is FALSE)
TRUE is any value other than 0

(and non-zero is TRUE)
1 is the result of a true relational operator

(e.g., 4 < 7 evaluates to 1)

F-12

Complex Conditionals

if I have at least $15 or you have at least
$15, then we can go to the movies

if the temperature is below 32 degrees
and it’s raining, then it’s snowing

if it’s not the case that it’s Saturday or
Sunday, then it’s a work day

F-3

F-13

Complex Conditionals in C
We use Boolean operators to code complex
conditionals in C.

We’ll say lots more about this later! For now,
here is some information for reference.

Boolean operators && || !
and or not

#define TRUE 1
#define FALSE 0

if (myMoney>=15.0 || yourMoney>=15.0) {
canGoToMovies = TRUE;

}

F-14

Multiple Actions
What if there’s more than one
conditional action?

“If your temperature is high, then you
have a fever and should take two
aspirin and go to bed and call in sick
tomorrow”

F-15

Compound Statement
Groups together statements so that they

are treated as a single statement:
{

statement1 ;
statement2 ;
...

}
Also called a "block."
Highly useful

Not just in conditionals, but many places in C
F-16

Using a Compound Statement

if (temperature > 98.6) {

printf ("You have a fever. \n");

aspirin = aspirin − 2 ;

printf ("Go to bed\n");

printf ("Sleep in tomorrow\n");

}

F-17

Combining and Substituting
Statements
•You may use a compound statement anywhere that
a single statement may be used

•Anywhere that a statement is allowed in C, any kind
of statement can be used

•A compound statement can contain any number of
statements (including 0)

•Among other things, these principles imply that
compound statements can be nested to any depth

F-18

Another Compound Example
Cash machine program fragment:

if (balance >= withdrawal) {
balance = balance – withdrawal;
dispense_funds(withdrawal);

}

What if () omitted?
What if {} omitted?

F-4

F-19

Finding Absolute Value
Problem: Compute the absolute value |x| of x and put the

answer in variable abs. Here are three solutions, all

correct:

abs = x;
if (x < 0) {

abs = -x;
}

if (x >= 0) {
abs = x;

} else {
abs = -x;

}

If (x >= 0) {
abs = x;

}
if (x < 0) {

abs = -x;
}

F-20

if - else

Print error message only if the condition is false:

if (balance >= withdrawal) {

balance = balance - withdrawal ;

dispense_funds (withdrawal) ;

}

else {

printf ("Insufficient Funds! \n ") ;

}

no ; here

F-21

if-else Control Flow

balance >= withdrawal

printf ("No money! \n ") ;
balance = balance - withdrawal ;

dispense_funds (withdrawal) ;

/* arrive here whether
condition is TRUE or
FALSE */

noyes

F-22

Nested if Statements

if (balance >= BILL_SIZE) {

printf ("Try a smaller amount. \n ") ;

} else {
printf ("Go away! \n") ;

}

#define BILL_SIZE 20

if (balance >= withdrawal) {

balance = balance - withdrawal ;
dispense_funds (withdrawal) ;

} else {

}

F-23

if (x == 5) {
if (y == 5) {

printf ("Both are 5. \n ") ;
} else {

printf ("x is 5, but y is not. \n ") ;
}

} else {
if (y == 5) {

printf ("y is 5, but x is not. \n ") ;
} else {

printf ("Neither is 5. \n ") ;
}

}

Nested ifs , Part II

F-24

< 15,000

15,000, < 30,000

30,000, < 50,000

50,000, < 100,000

100,000

0%

18%

22%

28%

31%

income tax

Tax Table Example

Problem: Print the % tax based on income:

F-5

F-25

Direct Solution
if (income < 15000) {

printf("No tax.");
}
if (income >= 15000 && income < 30000) {

printf("18%% tax.");
}
if (income >= 30000 && income < 50000) {

printf("22%% tax.");
}
if (income >= 50000 && income < 100000) {

printf("28%% tax.");
}
if (income >=100000) {

printf("31%% tax.");
}
Mutually exclusive conditions - only one will be true

F-26

if (income < 15000) { if (income < 15000) {
printf("No tax"); printf("No tax");

} else { } else if (income < 30000) {
if (income < 30000) { printf("18%% tax.");

printf("18%% tax."); } else if (income < 50000) {
} else { printf(" 22%% tax.");

if (income < 50000) { } else if (income < 100000) {
printf("22%% tax."); printf("28%% tax.");

} else { } else
if (income < 100000) { printf("31%% tax.");

printf("28%% tax."); }
} else {

printf("31%% tax.");
}

}
}

}

Order is important. Conditions are evaluated in order given.

Cascaded ifs

F-27

The idea of conditional execution is natural ,
intuitive, and highly useful

However...

Programs can get convoluted and hard to
understand

There are syntactic pitfalls to avoid

Warning: Danger Ahead

F-28

if (x = 10) {

printf("x is 10 ") ;

}

Pitfalls of if, Part I

Bug! = is used instead of ==

This is not a syntax error, so the compiler
will not report any errors and the program
can execute

F-29

status = check_radar () ;

if (status = 1) {

launch_missiles () ;
}

The World’s Last C Bug

F-30

No:
if (0 <= x <= 10) {

printf ("x is between 0 and 10. \n ") ;
}

Pitfalls of if, Part II

Yes:

if (0 <= x && x <= 10) {
printf ("x is between 0 and 10. \n ") ;

}

F-6

F-31

Pitfalls of if, Part III

& is different from &&
| is different from ||

& and | are not used in this class, but are legal C

If used by mistake, no syntax error, but program may

produce bizarre results

F-32

Pitfalls of if, Part IV

Beware == and != with doubles:

double x ;

x = 30.0 * (1.0 / 3.0) ;

if (x == 10.0) …

F-33

Next Time

We’ll be discussing functions, a major topic
of the course

Many students find it intellectually
challenging compared to the previous
material

