
G1-1

G1-11/19/2001

CSE 142
Computer Programming I

Functions I

© 2001 UW CSE
G1-2

Overview

Concepts this lecture
Functions
Function control flow
Two meanings of the keyword void
Pre-written functions (library routines)

G1-3

Chapter 3

Read All!

3.1: Reusing program parts

3.2: Built-in math functions

3.3: Top-Down Design

3.4: Functions with no parameters

3.5: Functions with parameters
G1-4

Control Flow: Review
“Control flow” is the order in which statements
are executed

We’ve discussed two forms of control flow so
far: sequential and conditional (in more than one
flavor)

G1-5

Another Form of Control Flow

“Functions” (or “procedures” or “subroutines”)
allow you to “visit” a chunk of code and then
come back

The function maybe elsewhere in your own
program, or may be code in another file
altogether

G1-6

Why Use Functions?

Here’s one example:
Suppose we are writing a program that
displays many messages on the screen,
and…

We'd like to display two rows of
asterisks to separate sections of output:

G1-2

G1-7

Moving Toward a Solution

The result we want is this:

And the basic code needed is this:

printf("********************\n");
printf("********************\n"); G1-8

#include <stdio.h>
int main(void)
{
/* produce some output */
...
/* print banner lines */
printf("********************\n");
printf("********************\n");

/* produce more output */
...
/* print banner lines */
printf("********************\n");
printf("********************\n");

A Full Solution

/* produce even more output */
...
/* print banner lines */
printf("********************\n");
printf("********************\n");

/* produce final output */
...
return 0 ;

}

G1-9

Anything Wrong With This?

It’s correct C code

It fulfills the problem specification, i.e., gives
the desired result

G1-10

Anything Wrong With This?

It’s correct C code

It fulfills the problem specification, i.e., gives the
desired result

What’s “wrong” has to do with other issues such as:

• How hard it would be change the program in
the future

• How much work is it to write the same
statements over and over

• ...

G1-11

What if...

Later on we wants to change...
• The number of rows of asterisks
• The number of asterisks per row
• Use hyphens instead of asterisks
• Print the date and time with each separator
• ...

How much work is involved?
G1-12

… have to edit every “copy” of the code in the
program.

… it’s easy to overlook some copies.

… it can be hard to find them all (because they
might not be written identically).

… it can be hard to find them all because code
written identically may not serve the same
logical purpose.

If We Want to Change Anything

G1-3

G1-13

Deceptively Simple Big Idea

One idea ⇒One definition, many uses

One idea ⇒One definition, many uses
One idea ⇒One definition, many uses
One idea ⇒One definition, many uses
One idea ⇒One definition, many uses
One idea ⇒One definition, many uses
One idea ⇒One definition, many uses

One idea ⇒One definition, many uses

G1-14

Big Idea for Data: Symbolic Constants

One idea ⇒One definition, many uses

if (myMoney > 80.0) {
myShoes = myShoes + 1;
myMoney = myMoney – 80.0;

}

int COST_OF_SHOES = 80.0;
…
if (myMoney > COST_OF_SHOES) {
myShoes = myShoes + 1;
myMoney = myMoney – COST_OF_SHOES;

}

Not this!

One idea:
cost of shoes

One
Name

Many
Uses

One
Definition

G1-15

• Identify a “sub-problem” that has to be solved in your
program

• Choose a name to represent “the solution of that
problem by code”

• Write that solution code (only once)

• Whenever you see that same sub-problem again,
use the function name to say “go to that code now to
take care of this problem, and don’t come back until
you’re done”

Big Idea for Code: Functions

One idea ⇒One definition, many uses

One idea

One
definition

Many
Uses

Many
Name

G1-16

PrintBannerLines Function

For our print banner program, that idea means this:
• Identify the idea

print a banner
(NOT print two rows of asterisks)

• Give the function that does that a name
PrintBannerLines

• Define the solution by writing the code
printf("********************\n");
printf("********************\n");

• Whenever you want to print a banner, use the
function name

PrintBannerLines();

G1-17

#include <stdio.h>
int main(void)
{

/* produce some output */

PrintBannerLines();

/* produce more output */

PrintBannerLines();

/* produce more output */

PrintBannerLines();

/* produce final output */

return 0 ;
}

printf("********************\n");

printf("********************\n");

The code named PrintBannerLines

G1-18

Discussion Question

In the new version of the program:

What do we have to do now if we want
to change the banner?

How many places in the program have
to be changed?

What if we want to print two rows of
asterisks for something that isn’t a
banner?

G1-4

G1-19

The Big Picture, So Far
You’ve now some colossal concepts:

Abstraction

Functions

Function control flow

The motivation for functions

Coming right up...

Syntax for defining a function

Built-in C functions G1-20

Syntax for PrintBannerLines

/* write separator line on output */
void PrintBannerLines (void)
{

printf("***************\n");
printf("***************\n");

}

G1-21

Two Key Features

1. The name of the function and

2. the function body: code that is to be executed
when the function is called.

/* write separator line on output*/

void PrintBannerLines (void)

{

printf("***************\n");

printf("***************\n");

}

function body
(statements to be
executed).
A function can have
ANY number of ANY
kind of statements.

function name

heading comment

G1-22

/* write separator line on output*/

void PrintBannerLines (void)

{

printf("***************\n");

printf("***************\n");

}

Further details: void

The keyword void has two different
roles in this function definition.

indicates that the
function has no
parameters.

indicates that the function does
not return a value.

G1-23

Oops – Two New Concepts

1. Return values: we will postpone for now

2. Parameters: We will postpone this, too!

Both concepts are very important in general,
but not for this particular example

/* write separator line on output*/

void PrintBannerLines (void)

...
G1-24

Using PrintBannerLines
#include <stdio.h>

void PrintBannerLines (void)

{

printf("***************\n");

printf("***************\n");

}

int main (void)
{

/* produce some output */
…
PrintBannerLines();
...
return 0;

}

Empty () is
required when a
parameter-less
(void) function is
called.

The definition of
the function must
precede all calls
to it in the file.

G1-5

G1-25

Some C Functions
We have already seen and used several functions:

int main (void)
{

return 0;

}

printf ("control", list);

scanf ("control", &list);

Function
definition
for main()

Calls to the functions
printf() and scanf() G1-26

Library functions
• Pre-written functions are commonly packaged in
"libraries”

• Every standard C compiler comes with a set of standard
libraries

• Remember #include <stdio.h> ?
– Tells the compiler you intend to use the “standard
I/O library” functions

– printf and scanf are in the standard I/O library
– So are lots of other I/O related functions

• There are (many) other useful functions in other libraries

G1-27

Next Time

We’ll continue our discussion about functions.
We will examine how values are passed to
functions, and how values are returned

