
G2-1

G2-1

Deceptively Simple Big Idea

One idea ⇒One definition, many uses

One idea ⇒One definition, many uses
One idea ⇒One definition, many uses
One idea ⇒One definition, many uses
One idea ⇒One definition, many uses
One idea ⇒One definition, many uses
One idea ⇒One definition, many uses

One idea ⇒One definition, many uses

G2-2

• Identify a “sub-problem” that has to be solved in your
program

• Choose a name to represent “the solution of that
problem by code”

• Write that solution code (only once)

• Whenever you see that same sub-problem again,
use the function name to say “go to that code now to
take care of this problem, and don’t come back until
you’re done”

Big Idea for Code: Functions

One idea ⇒One definition, many uses

One idea

One
definition

Many
Uses

Many
Name

G2-3

Some C Functions
We have already seen and used several functions:

int main (void)
{

return 0;

}

printf ("control", list);

scanf ("control", &list);

Function
definition
for main()

Calls to the functions
printf() and scanf() G2-4

Library functions
• Pre-written functions are commonly packaged in
"libraries”
• Every standard C compiler comes with a set of standard
libraries
• Remember #include <stdio.h> ?

– Tells the compiler you intend to use the “standard
I/O library” functions
– printf and scanf are in the standard I/O library
– So are lots of other I/O related functions

• There are (many) other useful functions in other libraries

G2-5

#include <stdio.h>
int main(void)
{
/* produce some output */

PrintBannerLines();

/* produce more output */

PrintBannerLines();

/* produce more output */

PrintBannerLines();

/* produce final output */

return 0 ;
}

printf("********************\n");

printf("********************\n");

The code named PrintBannerLines

G2-6

Syntax for PrintBannerLines

/* write separator line on output */
void PrintBannerLines (void)
{
printf("***************\n");
printf("***************\n");

}

G2-2

G2-7

Two Key Features

1. The name of the function and

2. the function body: code that is to be executed
when the function is called.

/* write separator line on output*/

void PrintBannerLines (void)

{

printf("***************\n");

printf("***************\n");

}

function body
(statements to be
executed).
A function can have
ANY number of ANY
kind of statements.

function name

heading comment

G2-8

/* write separator line on output*/

void PrintBannerLines (void)

{

printf("***************\n");

printf("***************\n");

}

Further details: void

The keyword void has two different
roles in this function definition.

indicates that the
function has no
parameters.

indicates that the function does
not return a value.

G2-9

Using PrintBannerLines
#include <stdio.h>

void PrintBannerLines (void)

{

printf("***************\n");

printf("***************\n");

}

int main (void)
{
/* produce some output */
…
PrintBannerLines();
...
return 0;

}

Empty () is
required when a
parameter-less
(void) function is
called.

The definition of
the function must
precede all calls
to it in the file.

G2-10

Providing an Input to the Function:
Parameters
Can we modify the function so that instead of

print two rows of asterisks
(callee decides)

it will:

print N rows of asterisks
(caller decides)

where N is the number of rows that we want “this
time” when we call it

N is information that the function needs to know

#include <stdio.h>
int main(void)
{
PrintBannerLines(5);

/* produce some output */

PrintBannerLines(2);

/* produce final output */

PrintBannerLines(5);

return 0;
}

The value in the parentheses is
called the “parameter” of this
call.

5

Code for
PrintBannerLines

G2-12

Code for the Modified Function

The function will start off this way:

void PrintBannerLines (int n)
{
...

n is the “parameter” of the function. n can be
used inside the function just like a variable

(The full solution won’t be shown now. It requires a feature
called “iteration” that we will cover later. We’ll see parameters
in other examples.)

G2-3

G2-13

Parameters are New Variables!!!

PrintBannerLines(num);
void PrintBannerLines (int n)
{

…
n = n – 1;
…
return;

}

5 = ….?PrintBannerLines(5);

…

G2-14

Some Terminology Confusion

Many people use the term formal parameter
instead of parameter and actual parameter
instead of argument. We will try to stick to
parameter and argument for simplicity, but the
other terminology will probably slip in from time to
time.

People often refer to replacing a parameter with the
argument in a function call as “passing the
argument to the function”.

G2-15

Passing Results Back to the Caller

Specification: Write a function that, given the
radius, computes the area of a circle with that
radius.

What should it do with the result?

Please compute the area

of a circle of radius 1.7.

newArea = Area(1.7);

Area functionCaller

G2-16

Returned Values

Parameters are a way for the calling
routine to “send data” to the function

The new concept, return values, are the
opposite, a way for the function to send
data back to the calling routine

Please compute the area of

a circle of radius 1.7.

It’s 9.08

newArea = Area(1.7); return 3.14 * r * r;

G2-17

Returned values

/* return area of circle with radius r */
double Area (double r)
{
return 3.14 * r * r;

}

Type of value passed in

Type of value passed back

“Local variable” initialized
to caller’s argument

In the calling statement,
the call is evaluated as
this value

G2-18

Control and Data Flow

int main (void)
{
double x, y, z;

y = 6.0;

x = Area(y/3.0) ;
....

....

z = 3.4 * Area(7.88) ;
....

return 0;
}

/* Find area of circle

with radius r */

double Area (double r)

{

return 3.14 * r * r;

}
7.88

194.976...

2.0

12.56

G2-4

G2-19

More on return
For void functions:
return; causes control flow to return to the statement
following the call in the caller

For functions that return a value:
return expression; causes control flow to return to the
caller. The function call is “replaced” with the returned
value.

totalArea = Area(1.7) + Area(3.4);

Note: no parentheses are needed around the expression
Return is a C statement. It is not a function call

G2-20

Discussion Questions
1. Can you have more than one return inside a
function?

2. Does a return statement have to be the last
statement of a function?

3. If a function starts off as
double calculation (void) {…

could it contain this statement?
return;

4. If a function starts off as
void printfBankBalance (void) {…

could it contain this statement?
return currentBalance;

G2-21

Matching Up Types
The actual arguments must be of the type of the parameter.

The returned value will be of the type given before the
function’s name.

The “usual” conversion rules apply (as in expressions).

int main (void)

{ ...

z = 98.76;

x = 34.575 * area (z/2.0);

…

return 0;

}

/* Find area of circle with radius r */
double area (double r)
{
return 3.14 * r * r;

}

G2-22

Multiple Parameters

A function may have more than one parameter

Arguments must match parameters in number,
order, and type

double Avg (double total, int count)

{

return total / (double) count ;

}

double gpt, gpa;

gpt = 3.0 + 3.3 + 3.9;

gpa = Avg (gpt, 3);

...

arguments parameters

G2-23

Local Variables

A function can define its own local variables.

The locals have meaning only within
the function.
Local variables are created when
the function is called.
Local variables cease to exist when
the function returns.

Parameters are also local. G2-24

/* return area of circle with
radius r */

double CircleArea (double r)
{
double rsquared, area;
rsquared = r * r ;
area = 3.14 * rsquared ;
return area;

}

A Function with Local Variables

local variables

parameter

G2-5

G2-25

/* return area of circle with radius r */

double CircleArea (double r)
{
double rsquared, area;
rsquared = r * r ;
area = 3.14 * rsquared ;
return area;

}

LOCAL Variables

int main (void)
{
double result;
result = CircleArea(8.0);
rsquared = 2.0;
result = CircleArea(2.0);

}

Scope
Error

(undeclared identifier) G2-26

/* return area of circle with radius r */

double CircleArea (double r)
{
double rsquared, area;
rsquared = r * r ;
area = 3.14 * rsquared ;
return area;

}

Another Scope Error

int main (void)
{
double result;
result = CircleArea(8.0);

}

Scope
Error

(undeclared identifier)

G2-27

Scope

Function names are defined everywhere
(“globally”) within the file starting at the point
they are declared.

Variables are local to the function in which
they are declared.

G2-28

Global Variables

C lets you define variables that

are not inside any function.

They have global scope.

Global variables have a few

legitimate uses, but they often

are:

– a crutch to avoid using

parameters

– poor style

int main (void)
{
double result;
CircleArea(8.0);
result =myGlobal;

}

/* return area of circle with radius r */

void CircleArea (double r)
{
double rsquared;
rsquared = r * r ;
myGlobal = 3.14 * rsquared ;

}

int myGlobal;

G2-29

Surgeon General's Warning
In this course:
global variables are completely
verboten! Only local variables are
allowed in homework programs

Exception: symbolic constants may be
global
Their use is encouraged!

G2-30

Local Variables: Summary
(Formal) parameters and variables declared in a
function are local to it:

cannot be accessed (used) by other functions
except by being passed as actual parameters or
return values)

Allocated (created) on function entry, de-allocated
(destroyed) on function return.

(Formal) parameters initialized by copying value of
argument (actual parameter). (“Call-by-value”)

A good idea? YES!

localize information; reduce interactions.

G2-6

G2-31

Functions: Summary
Functions may take several parameters, or none.

Functions may return one value, or none.

Functions are valuable!

A tool for program structuring.

Provide abstract services: the caller cares
what the functions do, but not how.

Make programs easier to write, debug, and
understand. G2-32

Looking Ahead
There is still more to learn about functions

We’ll study other methods of parameter
passing

We’ll also look at functions as a fundamental
design technique

Many students report that functions are the first
really difficult concept of the course. They
have to be mastered. You haven’t seen the last
of functions, and you never will!

