CSE 142
Computer Programming |

Function Parameters

© 2000 UW CSE

1/30/2001 G2-1

Overview

Many concepts in this lecture! The most memorable:
Function parameters and arguments

Return values, return types, and the return
statement

Local variables
Function prototypes and header files
Lots of new terminolgy, too
Near the end of the lecture:
An extended program, traced

Refresher: Printing a Banner

Our original banner program called this
function to print a very simple banner

[* write separator line on output */
void PrintBannerLines (void)

p r I n tf (" ***************\n ")-
p r I n tf (" ***************\n ")-

The Client Wants a Change

Suppose we now want to change the program: it
should now print 5 rows of asterisks when it
starts and when it finishes, but print the
original 2 line banner everywhere else

We could write an additional function that prints 5
rows of asterisks, or...

Can we Generalize?

Suppose we now want to change the program: it
should now print 5 rows of asterisks when it
starts and when it finishes, but print the
original 2 line banner everywhere else

We could write an additional function that prints 5
rows of asterisks, or...

Could we somehow generalize

PrintBannerLines? Could we make the same
function do double duty?

Can we Generalize?

Can we modify the function so that instead of
print two rows of asterisks

it will:
print N rows of asterisks

where N is the number of rows that we want “this
time” when we call it

e
N is information that the function needs to know

Gz2-1

#include <stdio.h>
int main(void)
{

PrintBannerLines(5);

/* produce some output */

))) Code for
PrintBannerLines(2); PrintBannerLines
/* produce final output */

PrintBannerLines(5);

return 0; The value in the parentheses is
Y called the “parameter” of this
call.

Code for the Modified Function

The function will start off this way:

void PrintBannerLines (int n)

{

n is the “parameter” of the function. n can be
used inside the function just like a variable

The full solution won’t be shown now. It requires
a feature called “iteration” that we will cover
later. We'll see parameters in other examples.

A New Example Problem

Specification: Write a function which,
given the radius, computes and returns
the area of a circle with that radius

The new wrinkle here is that the function
must “return” a value

Returned Values

Parameters are a way for the calling
routine to “send data” to the function

The new concept, return values, are the
opposite, a way for the function to send
data back to the calling routine

G210

area Function, Solved

Specification: Write a function which, given the
radius, returns the area of a circle with that radius

New features:

1.The return statement stops function execution and
specifies the value returned.

2. The type of the returned value is stated before the
function name

/* return area of circle with radius r */
double area (double r)

G211

return 3.14 *r *r;

}

Void Parameters,
Non-void Returns

This function returns a number that it generates
internally, without the need for a parameter
(information) supplied by the caller.

function type (type of
I* Lturn a“random” number, » réturned value). We say
double GenRandom (void) GenRandom() is a function
of type double” or

“GenRandom() returns a
double.”

double result;
result=...

return result; local variable — exists only

f while function is executing

212

returned value return statement

More on return

For void functions:
return; causes control flow to return to the
statement following the call in the caller.

For functions that return avalue:
return expression; causes control flow to return to
the caller. The function call is “replaced” with the
returned value.

Note: no parentheses are needed around the
expression e

return is a C statement. It is not afunction call

Calling a Non-Void Function

A value-returning function can be used
anywhere an expression of the same type
can be used

int main (void) {
double firstRandom, secondRandom;
double result;
firstRandom = GenRandom();
secondRandom = GenRandom();
result = firstRandom + secondRandom;
printf(“the value of % + %f is %f.",

firstRandom, secondRandom, result);

return 0;

} G

return in void Functions

[* print banner line */
optional void print_banner (void)
{

PNt (" e)
PIiNt(" s)

/* do something * return;

void example (void) }

{

int no_reason_to_continue;

if (no_reason_to_continue) { terminate function
return; ~4———————— execution before
} reaching the end™
} (required)

Discussion Questions

[

Can you have more than one return inside a
function?

2. Does areturn statement have to be the last
statement of a function?
3. If a function starts off as
double calculation (void) {...
could it contain this statement?
return;
4. If a function starts off as
void printfBankBalance (void) {...
could it contain this statement?
return currentBalance;

G216

Matching up the Arguments

Rule: The function call must include a matching
argument for each parameter.

When the function is executed, the value of the
argument becomes the initial value of the parameter.
int main (void)

{ ..
2=98.76; r /* Find area of circlelwith radius r ¥/
x=34.575*area (2z/2.0); double area (double r)
{
return 0; return 3.14 *r*r;
} }

More Terminology Confusion

Many people use the term formal
parameter instead of parameter and
actual parameter instead of argument.
We will try to stick to parameter and
argument for simplicity, but the other
terminology will probably slip in from
time to time.

People often refer to replacing a
parameter with the argument in a
function call as “passing the argument
to the function”.

G2-3

Review: Function Control Flow

Some time ago we described the basic flow.

We can now give a much more detailed account
of how this flow works

6219

Control and Data Flow

When a function is called:

1. Memory space is allocated for the
function’s parameters and local
variables

2. Argument values are copied;

3. Control transfers to the function
body;

4. The function executes;

5. Control and return value return to the
point of call.

Control and Data Flow

int main (void)

/* Find area of circle
with radius r ¥

double area (double r)

{

return 3.14 *r*r;

double x, y, z;
y =6.0;
x = area(y/3.0) ;

z=3.4*area(7.88) ; 194.976...

return 0O;

G221

Control and Data Flow (2)

int main (void)
double x, y, z;
y =6.0;
x = area(y/3.0) ;

z=3.4*area(7.88) ; 194.976...

return 0O;

G222

Style Points

The comment above a function must give a
complete specification of what the function
does, including the significance of all
parameters and any returned value.

Someone wishing to use the function should be
able to cover the function body and find
everything they need to know in the function
heading and comment.

/* Compute area of circle with radius r */
double area (doubler)

G223

Multiple Parameters

A function may have more than one parameter
Arguments must match parameters in number,
order, and type
double gpt, gpa;
gpt=3.0+3.3+39;
gpa=avg (gpt, 3);

double avg (double total, int count)

return total / (dpuble) gbunt ;

}

arguments parameters b

G2-4

Rules for Returns

A function can only return one value --but
it might contain more than one return
statement

In a function with return type T, the
returned expression must be of type T.

A function with return type T can be used
anywhere an expression of type T can be
used.

G225

Where Are We?

We have seen all of the basic concepts for how a
function communicates with the outside world,
through parameters and return values

We know the syntax involved, as well as the
logical concepts

There is still atopic centered with the internal
programming of the function: the use of local
variables

Local Variables

A function can define its own local variables.

The locals have meaning only within
the function.
Local variables are created when
the function is called.
Local variables cease to exist when
the function returns.

Parameters are also local.

G227

A Function with Local Variables

[*return area of circle with
radius r */ parameter

double CircleArea (doubler) ~
double rsquared, area; <+—— local variables
rsquared =r *r;
area = 3.14 * rsquared ;
return area;

G228

Global Variables

C lets you define variables that are not
inside any function.

Called "global variables."

Global variables have legitimate uses, but
for beginners, they often are:

a crutch to avoid using parameters
poor style

6229

Surgeon General's Warning

In this course:

global variables are completely
verboten! Only local variables are
allowed in homework programs

Note: #define symbols are global, but
technically, they are not variables

Their use is encouraged!

6230

G2-5

Local Variables: Summary

(Formal) parameters and variables declared in a
function are local to it:

cannot be accessed (used) by other functions
except by being passed as actual parameters or
return values)

Allocated (created) on function entry, de-allocated
(destroyed) on function return.

(Formal) parameters initialized by copying value of
argument (actual parameter). (“Call-by-value”)

A good idea? YES!
localize information; reduce interactions. e

Now We’'re Ready!

Once we have local variables, we can
develop an extended and realistic example
of function usage.

Problem: Find the area of a washer-shaped
figure.

Within the solution, the circleArea function
already programming will be used.

P.S. The best way to follow this part of the
lecture would be to have a printed copy of
the full program in front of you o292

Washer Area Function

/* Find area of washer with given
inner and outer radius. */
double WasherArea (double inner, double outer)

{

double innerArea, outerArea, areaOfWasher ;

innerArea = CircleArea (inner) ;
outerArea = CircleArea (outer) ;
areaOfWasher = outerArea - innerArea;

return areaOfWasher ;
} 23

The Full Program on One Page

gl;“"‘“de <stdio.h> /* read washer info and print area */
efine P 3.0 . int main(void)
I* yield area of circle with radius r */
double CircleArea(double) { double
double
o printf (“Input inner radius and
. outer diameter: ") ;
=PI*y; scanf (" %lf %l ",):
return H =WasherArea (| 12.0);
I* yield area of a washer with ... */ mopfn)
double Washer Area(double inner, printf (" 96f, 1) ;
double outer) { .
double) return 0;

= CircleArea(inner) ;
= CircleArea(outer) ;

return

G234

Full Program, Page | of 2

#include <stdio.h> /* Find area of a washer with

#define P1 3.0 given inner and outer area */

double WasherArea(double
inner, double outer)

/* Find area of circle with

radius r */
double CircleArea(double r) double innerArea, outerArea,
{ areaOfWasher;
doubley, area; innerArea = CircleArea(inner) ;
outerArea = CircleArea(outer) ;
y=r*r; areaOfWasher = outerArea -
area=Pl*y; innerArea ;
return area; return areaOfWasher ;
} }

G235

Full Program, Page 2 of 2

/* read washer info and print area */
int main(void)

{

double inner, outer, y ;

printf ("Input inner radius and outer diameter: ") ;
scanf (" %lf %f ", &inner, &outer) ;

y = WasherArea (inner, outer/2.0) ;

printf (" % ", y) ;

return 0 ;

6236

G2-6

Showing How Functions

are Related “

I main
\

WasherArea printf scanf

v

CircleArea

This "static call graph" shows who calls whoz

Local Variables of main

main
inner outer y

G238

Parameters and local variables
of WasherArea

WasherArea

nner| outer | innerArea| outerArea| areaOfWasher

G239

Parameters and local variables
of CircleArea

CircleArea
r y area

G240

Full Program, Page 2 of 2

/* read washer info and print area */
int main(void)

{

double inner, outer, y ;

printf ("Input inner radius and outer diameter: *) ;
scanf (" %lf %f ", &inner, &outer) ;

y = WasherArea (inner, outer/2.0) ;

printf (" % ", y);

return 0;

G241

Full Program, Page | of 2

#include <stdio.h> /*Find area of awasher with

#define P1 3.0 given inner and outer area */

double WasherArea(double
inner, double outer)

/* Find area of circle with

radius r */ {
double CircleArea(double r) double innerArea, outerArea,
{ areaOfWasher;
doubley, area; innerArea = CircleArea(inner) ;
outerArea = CircleArea(outer) ;
y=r*r; areaOfWasher = outerArea -
area=Pl*y; innerArea ;
return area; return areaOfWasher ;
} }

G242

G2-7

Execution Trace Full Program, Page | of 2
#include <stdio.h> /*Find area of awasher with
main CircleArea #define P1 3.0 given inner and outer area */
inner [outer y r y area double WasherArea(double
/* Find area of circle with inner, double outer)
2.0 10.0 20| 40| 12.0 radius r */ {
double CircleArea(double r) double innerArea, outerArea,
areaOfWasher;
doubley, area; innerArea = CircleArea(inner) ;
WasherArea outerArea = CircleArea(outer) ;
- y=r*r; areaOfWasher = outerArea -
nnerf outer | innerArea| outerArea| areaOfWasher area=Pl*y; innerArea ;
return area; return areaOfWasher ;
2.0 5.0 } }
G2 coas
Execution Full Program, Page | of 2
#include <stdio.h> /*Find area of awasher with
main CircleArea #define P1 3.0 given inner and outer area */
inner [outer y T y | area double WasherArea(double
/* Find area of circle with inner, double outer)
2.0 10.0 5.0125.0| 75.0 radius r */ {
double CircleArea(double r) double innerArea, outerArea,
{ areaOfWasher;
doubley, area; innerArea = CircleArea(inner) ;
WasherArea outerArea = CircleArea(outer) ;
- y=r*r; areaOfWasher = outerArea -
nner| outer | innerArea| outerArea| areaOfWasher area=Pl*y; innerArea :
return area; return areaOfWasher ;
2.0/ 5.0 12.0 } }
G2as G2as
Execution Full Program, Page 2 of 2
/* read washer info and print area */
main int main(void)
mner [outer y {
double inner, outer, y ;
2.0 10.0 ! : ' :
printf ("Input inner radius and outer diameter: ") ;
scanf (" %lf %f *, &inner, &outer) ;
y = WasherArea (inner, outer/2.0) ;
WasherArea .
i printf (" % ", y) ;
nner| outer | innerArea| outerArea| areaOfWasher
return 0 ;
2.0/ 5.0 12.0 75.0 63.0 }
c2ar G248

G2-8

Functions: Summary

Execution
main
nner outer y

2.0 | 10.0 |63.0

Output: 63.0

G249

Functions may take several parameters, or none.
Functions may return one value, or none.
Functions are valuable!

A tool for program structuring.

Provide abstract services: the caller cares
what the functions do, but not how.

Make programs easier to write, debug, and
understand. G250

Looking Ahead

There is still more to learn about functions

We'll study other methods of parameter
passing

We'll also look at functions as a fundamental
design technique

Many students report that functions are the first
really difficult concept of the course. They
have to be mastered. You haven't seen the last
of functions, and you never will!

G251

G2-9

