
H2-1

H2-1

CSE 142
Computer Programming I

Loop Development and
Program Schemas

© 2000 UW CSE H2-2

Goals for Loop Development

Getting from problem statement to working
code

Systematic loop design and development

Recognizing and reusing code patterns

H2-3

Example: Rainfall Data
General task: Read daily rainfall amounts and
print some interesting information about them.
Input data: Zero or more numbers giving daily
rainfall followed by a negative number (sentinel).

H2-4

Example: Rainfall Data
General task: Read daily rainfall amounts and
print some interesting information about them.
Input data: Zero or more numbers giving daily
rainfall followed by a negative number (sentinel).

Example input data:
0.2 0.0 0.0 1.5 0.3 0.0 0.1 -1.0

Empty input sequence:
-1.0

Given this raw data, what sort of information
might we want to print?

H2-5

Rainfall Analysis
Some possibilities:
Just print the data for each day
Compute and print the answer to one of these
questions

How many days worth of data are there?
How much rain fell on the day with the most rain?
On how many days was there no rainfall?
What was the average rainfall over the period?
What was the median rainfall (half of the days have
more, half less)?
On how many days was the rainfall above average?

What’s similar about these? Different? H2-6

Rainfall Analysis
Some possibilities:
Just print the data for each day
Compute and print the answer a question like:

How many days worth of data are there?
How much rain fell on the day with the most
rain?
On how many days was there no rainfall?
What was the average rainfall over the
period?

What’s similar about these? Different?

H2-2

H2-7

#include <stdio.h>
int main (void) {

double rain; /* current rainfall from input */
/* read rainfall amounts and print until sentinel (<0) */
scanf("%lf", &rain);
while (rain >= 0.0) {

printf("%f ", rain);
scanf("%lf", &rain);

}
return 0;

}

Example: Print Rainfall Data

H2-8

#include <stdio.h>
int main (void) {

double rain; /* current rainfall from input */
int ndays; /* number of days of input */
/* read rainfall amounts and count number of days */
ndays = 0;
scanf("%lf", &rain);
while (rain >= 0.0) {

ndays = ndays + 1;
scanf("%lf", &rain);

}
printf("# of days input = %d.\n", ndays);
return 0;

}

Example: # Days in Input

H2-9

#include <stdio.h>
int main (void) {

double rain;

/* read rainfall amounts */

scanf("%lf", &rain);
while (rain >= 0.0) {

printf("%f ", rain);
scanf("%lf", &rain);

}

return 0;
}

Is There a Pattern Here?

#include <stdio.h>
int main (void) {

double rain;
int ndays;

/* read rainfall amounts */
ndays = 0;
scanf("%lf", &rain);
while (rain >= 0.0) {

ndays = ndays + 1;
scanf("%lf", &rain);

}
printf("# of days %d.\n", ndays);
return 0;

}

H2-10

A program schema is a pattern of code
that solves a general problem

Also called a “design pattern”

Learn patterns through experience,
observation.

If you encounter a similar problem, try to
reuse the pattern

Program Schema

H2-11

Given a problem to solve, look for a
familiar pattern

Work the problem by hand to gain insight
into possible solutions. Ask yourself
“what am I doing?”

Check your code by hand-tracing on
simple test data.

Tips For Problem Solving

H2-12

#include <stdio.h>
int main (void) {

double variable; /* current input */
declarations;
initial;
scanf("%lf", &variable);
while (variable is not sentinel) {

process;
scanf("%lf", &variable);

}
final;
return 0;

}

Schema: “Read until Sentinel”

H2-3

H2-13

Schema Placeholders (1)
In this schema, variable, declarations,
sentinel, initial, process, and final are
placeholders.
variable holds the current data from input.
It should be replaced each place it occurs
with the same appropriately named
variable.
sentinel is the value that signals end of
input.
declarations are any additional variables
needed.

H2-14

Schema Placeholders (2)

initial is any statements needed to
initialize variables before any processing
is done.
process is the “processing step” - work
done for each input value.
final is any necessary operations needed
after all input has been processed.

H2-15

#include <stdio.h>
int main (void) {

double rain; /* current rainfall */
declarations;
initial;
scanf("%lf", &rain);
while (rain >= 0.0) {

process;
scanf("%lf", &rain);

}
final;
return 0;

}

Schema for Rainfall

H2-16

Loop Development Tips
Often helps to start with

What has to be done to process one more
input value?
What information is needed for final?

Declare variables as you discover you need
them.

When you create a variable, write a comment
describing what’s in it!

Often easiest to write initial last
initial is “what’s needed so the loop works
the 1st time”

H2-17

Loop Development Examples

We will fill in the “Read Until Sentinel”
program schema to solve a couple of
problems

To save room on the slide, we will leave
out this boilerplate:

#include <stdio.h>
int main(void) {

Loop Schema
return 0;

}

H2-18

double rain; /* current rainfall */
decls:

initial:

scanf("%lf", &rain);
while (rain >= 0.0) {

process:

scanf("%lf", &rain);
}

final:

Print Rainfall Data

printf("%f ", rain);

H2-4

H2-19

double rain; /* current rainfall */
decls:

initial:

scanf("%lf", &rain);
while (rain >= 0.0) {

process:

scanf("%lf", &rain);
}

final:

Print # Days of No Rain

int nDryDays; /* days without rain */

nDryDays = 0;

if (rain == 0.0)
nDryDays = nDryDays + 1;

printf ("Dry days: %d\n",nDryDays);
H2-20

double rain; /* current rainfall */
decls:

initial:

scanf("%lf", &rain);
while (rain >= 0.0) {

process:

scanf("%lf", &rain);
}

final:

Print Largest Daily Rainfall

double maxRain; /* Largest amount
seen so far */

maxRain = 0.0;

if (rain > maxRain)
maxRain = rain;

printf ("Largest rainfall: %f\n",
maxRain);

H2-21

double rain; /* current rainfall */
decls:

initial:

scanf("%lf", &rain);
while (rain >= 0.0) {

process:

scanf("%lf", &rain);
}

final:

Print Average Daily Rainfall

double totalRain; /* rain amount */
int nRain; /* days */
totalRain = 0;
nRain = 0;

totalRain = totalRain + rain;
nRain = nRain + 1;

printf ("average rainfall is %f\n",
totalRain / nRain); H2-22

double rain; /* current rainfall */
decls:

initial:

scanf("%lf", &rain);
while (rain >= 0.0) {

process:

scanf("%lf", &rain);
}

final:

Print Average Daily Rainfall (2)

double totalRain; /* rain amount */
int nRain; /* days */
totalRain = 0;
nRain = 0;

totalRain = totalRain + rain;
nRain = nRain + 1;

if (nRain > 0)
printf ("avg: %f\n", totalRain / nRain);

else printf("No data");

H2-23

Summary

Loop design is not always a top-to-bottom
process

Sometimes “process”/ “init”/ “final” is useful,
with “decls” as needed

A program schema is a pattern of code that
solves a general problem

We looked at just one, “Read Until Sentinel.”
Look for other general patterns as you get
more experience

