
I-1

I-1

CSE 142
Computer Programming I

Complex Conditions

From Homework Descriptions to Programs

© 2000 UW CSE I-2

Overview

Concepts this lecture
Part A

Not
Truth tables
DeMorgan’s laws

Part B
Design
Testing

I-3

Boolean Operators in C

Conditionals often involve words like AND, OR, and
NOT.

The Boolean operators AND, OR, and NOT have
these symbols in C:

&& || !
and or not

I-4

Conditionals in C
if I have at least $15 or you have at least $15, then we
can go to the movies:

if (myMoney>=15.0 || yourMoney>=15.0) {
canGoToMovies = TRUE;

}

if the temperature is below 32 degrees and it’s raining,
then it’s snowing:

if (temperature<32.0 && raining) {
snowing = TRUE;

}

I-5

Assignment of Conditional Expressions
Sometimes it’s more convenient (or clearer) to assign the value of a
complex conditional to a variable than to write the conditional as a test.

The simplest case: TRUE and FALSE

int TRUE = 1;
int FALSE = 0;

int canGoToMovies;

canGoToMovies = TRUE ;

…

if (canGoToMovies) {

…

}
I-6

Assignment of Conditional Expressions

int TRUE = 1;
int FALSE = 0;

int canGoToMovies;

canGoToMovies = myMoney>=15.0 || yourMoney>=15.0;

…

if (canGoToMovies) {

…

}

I-2

I-7

Negating Conditions

Suppose we want a while loop to terminate
as soon as either x is 17 or x is 42
Which is it?

while (x!=17 || x!=42) …
while (x!=17 && x!=42) …

Either way? Something else?

Truth tables and DeMorgan’s Law give us
tools for answering such questions I-8

A "truth table" lists all possible combinations of values, and

the result of each combination

P Q P && Q P || Q

T T

T F

F T

F F

P and Q stand for any conditional expressions

(“boolean value”)

Truth Tables for && and ||

T

F

F

F

T

T

T

F

I-9

Truth Table for not (!)

P !P

T F

F T

I-10

int highRisk ;

highRisk = age < 25 && sex == 'M' ;
if (highRisk) { /* Do nothing */
} else {

printf ("Cheap rates. \n") ;
}

not (!) Example

P !P

T F

F T
if (! high_risk) {

printf ("Cheap rates. \n") ;
}

I-11

Equivalence of Complex Expressions

if (! (age < 25 && sex == 'M'))

printf ("Cheap rates. \n") ;

is equivalent to

if (age >= 25 || sex != 'M'))

printf ("Cheap rates. \n") ;

Or is it?

I-12

DeMorgan’s Laws
DeMorgan’s laws help determine when two
complex conditions are equivalent

They state:

! (P && Q) is equivalent to (!P || !Q)

! (P || Q) is equivalent to (!P && !Q)

This applies for any Boolean expressions P
and Q, which might themselves be complex
expressions

I-3

I-13

P Q (P&&Q) !(P&&Q) !P !Q (! P || !Q)
T T
T F
F T
F F

Proof of DeMorgan
Is it really true that !(P&&Q) == (!P || !Q) ?

T
F
F
F

F
T
T
T

F
F
T
T

F
T
F
T

F
T
T
T

Exercise: Prove the other law
I-14

Solution To a Previous Question

We wanted a while loop to terminate as soon as
either x is 17 or x is 42.

So the loop condition is
while (! (x==17 || x==42)) …

Using DeMorgan’s Law we can rewrite as
while (x != 17 && x != 42) …

A truth table would show that
while (x != 17 || x != 42)

is wrong! (It’s always true, for one thing…)

I-15

DeMorgan’s Law Summary

!(……………………..)

(A great deal more notation is required to be 100% general and
100% correct, but this picture might help.)

|| ⇒ &&

&& ⇒ ||

! ⇒

⇒ !

< ⇒ >=

== ⇒ !=

>= ⇒ <

!(a<b || (!c && d==e))

(a>=b && (c || d!=e))

(Warning: && has higher
precedence than ||.
Use (..)’s!)

I-16

Part B

Loop Development and
Program Schemas

© 2000 UW CSE

I-17

Goals for Loop Development

Getting from problem statement to working
code

Systematic loop design and development

Recognizing and reusing code patterns

I-18

Example: Rainfall Data
General task: Read daily rainfall amounts and print
some interesting information about them.
Input data: Zero or more numbers giving daily rainfall
followed by a negative number (sentinel).

Example input data:
0.2 0.0 0.0 1.5 0.3 0.0 0.1 -1.0

Including the empty input sequence:
-1.0

Given this raw data, what sort of information might we
want to print?

I-4

I-19

Rainfall Analysis
Some possibilities:
Just print the data for each day
Compute and print the answer to one of these
questions

How many days worth of data are there?
How much rain fell on the day with the most rain?
On how many days was there no rainfall?
What was the average rainfall over the period?
What was the median rainfall (half of the days have more,
half less)?
On how many days was the rainfall above average?

What’s similar about these? Different? I-20

#include <stdio.h>
int main (void) {

int SENTINEL = -1.0;
double rain; /* current rainfall from input */
/* read rainfall amounts and print until sentinel (<0) */
do {
rain = ReadDouble();
if (rain != SENTINEL) {
printf("%f ", rain);

}
} while (rain >= 0.0);
return 0;

}

Example: Print Rainfall Data

I-21

#include <stdio.h>
int main (void) {
int SENTINEL = -1.0;
double rain; /* current rainfall from input */
int ndays = 0; /* number of days of input */

do {
rain = ReadDouble();
if (rain > 0.0) {

ndays = ndays + 1;
}

} while (rain != SENTINEL);
printf("# of days input = %d.\n", ndays);
return 0;

}

Example: # Days in Input

I-22

#include <stdio.h>

int main (void) {

int SENTINEL = -1.0;

double rain;

do {

rain = ReadDouble();

If (rain != SENTINEL) {

printf("%f ", rain);

}

} while (rain != SENTINEL);

return 0;

}

Is There a Pattern Here?

#include <stdio.h>
int main (void) {
int SENTINEL = -1.0;
double rain;
int ndays = 0;

do {
rain = ReadDouble();
if (rain > 0.0) {

ndays = ndays + 1;
}

} while (rain != SENTINEL);
printf("# of days input = %d.\n", ndays);
return 0;

}

I-23

A program schema is a pattern of code
that solves a general problem

Also called a “design pattern”

Learn patterns through experience,
observation.

If you encounter a similar problem, try to
reuse the pattern

Program Schema

I-24

Given a problem to solve, look for a
familiar pattern

Work the problem by hand to gain insight
into possible solutions. Ask yourself
“what am I doing?”

Check your code by hand-tracing on
simple test data.

Tips For Problem Solving

