
M-1

M-1

CSE 142
Computer Programming I

Complex Conditions

From Homework Descriptions to Programs

© 2000 UW CSE
M-2

Negating Conditions

Suppose we want a while loop to terminate
as soon as either x is 17 or x is 42
Which is it?

while (x!=17 || x!=42) …
while (x!=17 && x!=42) …

Either way? Something else?

Truth tables and DeMorgan’s Law give us
tools for answering such questions

M-3

A "truth table" lists all possible combinations of values, and

the result of each combination

P Q P && Q P || Q

T T

T F

F T

F F

P and Q stand for any conditional expressions

(“boolean value”)

Truth Tables for && and ||

T

F

F

F

T

T

T

F

M-4

Truth Table for not (!)

P !P

T F

F T

M-5

Equivalence of Complex Expressions

if (! (age < 25 && sex == 'M'))

printf ("Cheap rates. \n") ;

is equivalent to

if (age >= 25 || sex != 'M'))

printf ("Cheap rates. \n") ;

Or is it?

M-6

DeMorgan’s Laws
DeMorgan’s laws help determine when two
complex conditions are equivalent

They state:

! (P && Q) is equivalent to (!P || !Q)

! (P || Q) is equivalent to (!P && !Q)

This applies for any Boolean expressions P
and Q, which might themselves be complex
expressions

M-2

M-7

P Q (P&&Q) !(P&&Q) !P !Q (! P || !Q)
T T
T F
F T
F F

Proof of DeMorgan
Is it really true that !(P&&Q) == (!P || !Q) ?

T
F
F
F

F
T
T
T

F
F
T
T

F
T
F
T

F
T
T
T

Exercise: Prove the other law M-8

Solution To a Previous Question

We wanted a while loop to terminate as soon as
either x is 17 or x is 42.

So the loop condition is
while (! (x==17 || x==42)) …

Using DeMorgan’s Law we can rewrite as
while (x != 17 && x != 42) …

A truth table would show that
while (x != 17 || x != 42)

is wrong! (It’s always true, for one thing…)

M-9

CSE 142
Computer Programming I

Pointer Parameters

© 2000 UW CSE M-10

Overview

Concepts this lecture
Function parameters
Call by value (review)
Pointer parameters - call by reference
Pointer types
& and * operators

M-11

Reading

6.1 Output (pointer) Parameters

6.2 Multiple calls to functions with output
parameters

6.3 Scope of Names

6.4 Passing Output Parameters to other
functions

6.6, 6.7 Debugging and common
programming errors

M-12

3 8 ?

4 7 ?

What Does This Print?

int main (void) {
int a, b ;
a = 4 ; b = 7 ;
MoveOne(a, b) ;
printf("%d %d", a ,b);
return 0;

}

Output:

/* change x and y */
void MoveOne (int x, int y) {

x = x - 1;
y = y + 1;

}

M-3

M-13

Function Call Review

Remember how function calls are executed:
Allocate space for parameters and local

variables
Initialize parameters by copying argument

values
Begin execution of the function body

Trace carefully to get the right answer
M-14

Trace
/* change x and y */
void MoveOne (int x, int y) {

x = x - 1;
y = y + 1;

}
int main (void) {

int a, b ;
a = 4 ; b = 7 ;
MoveOne(a, b) ;
printf("%d %d", a ,b);
return 0;

}

main

a b

4 7

Output: 4 7

move_one

x y

4 7X 3 X 8

M-15

Call By Value is Not Enough

Once the function parameters are initialized with
copies of the arguments, there is no further
connection.

If the function changes its parameters, it affects
the local copy only.

To actually change the arguments in the caller,
the function needs access to the locations of
the arguments, not just their values.

M-16

New Type: Pointer

A pointer contains a reference to
another variable; that is, a pointer
contains the memory address of a
variable.

xp has type pointer to int

(often written: xp has type
int*)

x
32

xp

M-17x

Declaring and Using a Pointer

int x; /* declares an int variable */

int* xp; /* declares a pointer to int */

If the address of x is stored in xp, then:

xp = 0; / Assign integer 0 to x */

*xp = *xp + 1; /* Add 1 to x */

xp
0X 1

M-18

Pointer Solution to move_one

The & operator
in front of a
variable name
creates a
pointer to that
variable

void MoveOne (int * x_ptr, int * y_ptr) {

*x_ptr = *x_ptr - 1;

*y_ptr = *y_ptr + 1;

}
int main (void) {

int a, b ;
a = 4 ; b = 7 ;
MoveOne(&a , &b) ;
printf("%d %d", a, b);
return 0;

}

M-4

M-19

Trace

main

a b

4 7

MoveOne

x_ptr y_ptr

Output:

void MoveOne (
int * x_ptr,
int * y_ptr) {

*x_ptr = *x_ptr - 1;
*y_ptr = *y_ptr + 1;

}

a = 4 ; b = 7 ;
MoveOne(&a , &b) ;

X 3 X 8

M-20

Trace

main

a b

4 7

Output:

void MoveOne (
int * x_ptr,
int * y_ptr) {

*x_ptr = *x_ptr - 1;
*y_ptr = *y_ptr + 1;

}

a = 4 ; b = 7 ;
MoveOne(&a , &b) ;

X 3 X 8

3 8

M-21

Aliases

*x_ptr and *y_ptr act like aliases for the
variables a and b in the function call.

When you change *x_ptr and *y_ptr you
are changing the values of the caller’s
variables.

To create these aliases you need to use
&a, &b in the call.

M-22

Pointer Types
Three new types:

int * “pointer to int”
double * “pointer to double”
char * “pointer to char”

These are all different - a pointer to a
char can’t be used if the function
parameter is supposed to be a pointer
to an int, for example.

M-23

Pointer Operators

Two new (unary) operators:
& “address of”

& can be applied to any variable (or param)
* “location pointed to by”

* can be applied only to a pointer

Keep track of the types:
if x has type double,
&x has type “pointer to double” or “double *”

M-24

Vocabulary

Dereferencing or indirection:
following a pointer to a memory
location

The book calls pointer parameters “output
parameters”:

can be used to provide a value (“input”)
as usual, and/or store a changed value
(“output”)
Don’t confuse with printed output (printf)

M-5

M-25

Why Use Pointers?
For parameters:

in functions that need to change their
actual parameters (such as move_one)

in functions that need multiple “return”
values (such as scanf)

These are the only uses in this course

In advanced programming, pointers are used to
create dynamic data structures. M-26

Now we can make sense out of the
punctuation in scanf

int x,y,z;

scanf("%d %d %d", x, y, x+y); NO!
scanf("%d %d", &x, &y); YES! Why?

scanf Revisited

M-27

Problem: Find the midpoint
of a line segment.

Algorithm: find the average
of the coordinates of the
endpoints:

xmid = (x1+x2)/2.0;
ymid = (y1+y2)/2.0;

Example: Midpoint Of A Line

Programming approach: We’d like to package
this in a function

(x1, y1)

(x2, y2)

(x1+x2) (y1+y2)

2 2
,()

M-28

The (midx,midy)
parameters are being
altered, so they need to
be pointers

Function Specification
Function specification: given endpoints (x1,y1)
and (x2,y2) of a line segment, store the
coordinates of the midpoint in (midx, midy)

Parameters:
x1, y1, x2, y2, midx, and midy

(x1, y1)

(x2, y2)

(x1+x2) (y1+y2)

2 2
,()

M-29

void SetMidpoint(double x1, double y1,
double x2, double y2,
double * midx_p, double * midy_p)

{

*midx_p = (x1 + x2) / 2.0;
*midy_p = (y1 + y2) / 2.0;

}

Midpoint Function: Code

double x_end, y_end, mx, my;
x_end = 250.0; y_end = 100.0;
SetMidpoint(0.0, 0.0,

x_end, y_end,
&mx, &my);

(x1, y1)

(x2, y2)

(x1+x2) (y1+y2)

2 2
,()

M-30

Trace
SetMidpoint

x1 y1 x2 y2 midx_p midy_p

main

x_end y_end mx my

250.0 100.0

0.0 0.0 250.0 100.0

125.0 50.0

SetMidpoint(0.0, 0.0,
x_end, y_end,
&mx, &my);

M-6

M-31

Example: Gameboard
Coordinates

Board Coordinates

row, column (used by

players)

Screen Coordinates

x, y (used by

graphics package)

(x,y)

Problem: convert (x,y) to (row,col) M-32

Coordinate Conversion: Analysis

row

col

(LL_X, LL_Y)

(x,y)

x – LL_X

y – LL_Y

SQUARE_SIZE

0 1 2 3 4

4

3

2

1

0

M-33

void screen_to_board (
int screenx, int screeny, /* coords on screen */
int * row_p, int * col_p) /* position on board */

{

Coordinate Conversion: Code
int LL_X = 40;
int LL_Y = 20;
int SQUARE_SIZE =10;

screen_to_board (x, y, &row, &col);

*row_p = (screeny - LL_Y) / SQUARE_SIZE;
*col_p = (screenx - LL_X) / SQUARE_SIZE;

}

M-34

Problem: Reorder

Suppose we want a function to arrange its two
parameters in reverse numeric order.

Example:
-1, 5 need to be reordered as 5, -1
12, 3 is already in order (no change needed)

Parameter analysis: since we might change the
parameter values, they have to be pointers

This example is a small version of a very
important problem in computer science, called
“sorting”

M-35

Code for Reorder

/* ensure *p1 >= *p2, interchanging
values if needed */

void reorder(int *p1, int *p2) {
int tmp;
if (*p1 < *p2) {

tmp = *p1;
*p1 = *p2;
*p2 = tmp;

}
}

These 3 lines can be
said to "swap" two
values

M-36

swap as a Function

/* interchange *p and *q */
void swap (int * p, int * q) {

int temp ;
temp = *p ;
*p = *q ;
*q = temp ;

}

int a, b ;
a = 4; b = 7;
...
swap (&a, &b) ;

M-7

M-37

Reorder Implemented using swap

/* ensure *p1 >= *p2, interchanging values if
needed */
void reorder(int *p1, int *p2) {

if (*p1 < *p2)
swap(____ , _____);

}

What goes in the blanks?

M-38

Pointer Parameters (Wrong!)
Normally, if a pointer is expected, we create one
using &:

/* ensure *p1 >= *p2, interchanging values if
needed */
void reorder(int *p1, int *p2) {

if (*p1 < *p2)
swap(&p1 , &p2);

}

But that can’t be right - p1 and p2 are already
pointers!
What are the types of expressions &p1 and &p2?

M-39

Pointer Parameters (Right!)

Right answer: if the types match (int *), we
use the pointers directly

/* ensure *p1 >= *p2, interchanging values if
needed */
void reorder(int *p1, int *p2) {

if (*p1 < *p2)
swap(p1 , p2);

}

M-40

swap

p q temp

17

Trace

main

x y

reorder

p1 p2

void swap(int *p,
int *q){

…
}

void reorder(int*p1,
int*p2) {

if (*p1 < *p2)
swap(p1,p2);

}

int x, y;
x = 17; y = 42;
reorder(&x,&y);

17 42X 42 X 17

M-41

Pointers and scanf Once More
Problem: User is supposed to enter 'y' or 'n', and
no other answer is acceptable. Read until user
enters 'y' or 'n' and return input

void Read_y_or_n(char *chp) {
...

}

int main(void) {
char ch;
Read_y_or_n(&ch);
... M-42

Pointers and scanf Once More
/* read until user enters 'y' or 'n' and return input */

void Read_y_or_n(char *chp) {
printf("Enter an 'y' or a 'n'.\n");
scanf("%c", chp);
while (*chp != 'y' && *chp != 'n') {

printf ("\nSorry, try again\n");
scanf("%c", chp);

}
}
int main(void) {

char ch;
Read_y_or_n(&ch);
...

No ‘&’ !

M-8

M-43

Wrapping Up

Pointers are needed when the parameter value
may be changed

& creates a pointer
* dereferences the value pointed to

This completes the technical discussion of
functions in C for this course

Learning how to design and use functions will be
a continuing concern in the course

