
P-1

P-1

CSE 142
Computer Programming I

Linear & Binary Search

©2000 UW CSE P-2

Concepts This Lecture

Searching – what it means
Linear search
Binary search
Comparing algorithm performance

P-3

Searching

9932431
John Smith

9933431
Jay Smith

9923871

Jack Smith

9328122
Jon Smith

9933432
Jon Smythe

9934431
Johan Schmitz

9935443
Jack Smythe9793212

John Smythe

What is the name of the student with id 9933432? QUICK!

P-4

Searching

• Assume we have N items in some sort of collection
• Each item has a key field
• We’re looking for a record matching a search key – it
may or may not be in the collection

• “One operation” means comparing the search key with
a single item’s key (and possibly moving on to the next
item in the collection)

• Goal: minimize the number of operations required to
find an item (as a function of N, the collection size)

P-5

Data Structures

• Collections of items are organized into data structures
that determine:
– How expensive it is to get from item n to item n+1 (or from n to

n+k)
– The relationship of the key values among the items (e.g, “item

n+1 is guaranteed to be larger than item n”, or “there’s no size
relationship between n and n+1”)

• Data structures is a gigantic topic that we’ll touch on
only a bit in 142; more in 143; more in all of Computer
Science…

P-6

Example Data Structure:
“Linked List”

9932431
John Smith 9933431

Jay Smith

9923871

Jack Smith

9328122
Jon Smith

9933432
Jon Smythe

9934431
Johan Schmitz

9935443
Jack Smythe

9793212
John Smythe

P-2

P-7

Linked List: Example Implementation

typedef struct {
… // actual data
int nextElement;

} ElementType;

ElementType linkedList[MAXELS];
int listHead;

0

1

2

3

4

…

WARNING: This isn’t how it’s
“really done” in most cases

9932431
John Smith

4

9933431
Jay Smith

5

listHead
1

9935443
Jack Smythe

0

9793212
John Smythe

2

9328122
Jon Smith

18

P-8

Linked List

• N elements total
• Assume for now that the elements are in no particular

order in the list (i.e., they’re not sorted)
• “1 operation” is “compare for equality and move one

element down the list if not equal”
• How long does it take to find the element matching the

search key?

P-9

Linked List

• N elements total
• “1 operation” is “compare for equality and move one

element down the list if not equal”
• How long does it take to find the element matching the

search key?
• We mean “how long in the worst case”
• We state answer not in seconds or microseconds, but

in terms proportionality to N; e.g.,
• Proportional to N
• Proportional to N2

• Proportional to Sqrt(N)

P-10

Linked List: Search Time

• If the elements are not sorted in the list, the search time is
proportional to N

• Does it help to sort the elements?
• No – in the worst case (the element is bigger than any

element in the list) we still have to go all the way
from the beginning to the end, which costs N

• Is there anything you can do about ordering the elements
in the list that will reduce the (worst case) search time?

P-11

Example Data Structure II: Array

typedef struct {
… // actual data

} ElementType;

ElementType linkedList[MAXELS];
int currentSize;

0

1

2

3

4

…

WARNING: This isn’t how it’s
“really done” in most cases

9932431
John Smith

9933431
Jay Smith

currentSize
4

9935443
Jack Smythe

9328122
Jon Smith

P-12

Searching An Array: Linear Search

Q: If there are N elements stored in the array,
how long does it take to perform the search
for a specific key (worst case)?

A: If we search by first looking at element 0, then
element 1, then element2, etc., it’s just like a
linked list, so time is proportional to N.
(In fact, it is a linked list, but with “implicit
pointers” from each element n to n+1 as its
successor.)

Gee, that was boring…

P-3

P-13

Searching An Array: Can We Do Better?

Q: Suppose we know the array is sorted from
smallest to largest element. How long does a
search take?

A: Well, if there is no relationship among the key
values stored in the array and their position in
the array, no – proportional to N is the best
we can do.

But, if the array is sorted…
P-14

Searching An Array: Can We Do Better?

0

22

-19

8

33

41

18

7

-19

0

7

8

18

22

33

41

Unsorted Array Sorted Array

P-15

Searching A Sorted Array: Idea #1

-19

0

7

8

18

22

33

41

Sorted Array

• Compare to element 0
• Compare to element 2
• Compare to element 4
• …

Count By Two

Example: Search key = 8

Time is proportional to N/2
P-16

Hey, That Was Great!: Idea #2

-19

0

7

8

18

22

33

41

Sorted Array

• Compare to element 0
• Compare to element 2
• Compare to element 4
• …

Count By Five

Example: Search key = 8

Time is proportional to N/5

P-17

This is So Great!: The Problem

Q: If looking at every other element is faster than looking
at elements one after another, and if…
Looking at every fifth element is faster still, …
Why not look at every millionth element (or every
zillionth)?

A: This will seem weird, but it’s because it isn’t really
helping us very much

That is, N and N/1,000,000 are both really big
numbers if N is big enough

P-18

This is So Great!: The Problem Visually

1000 1,000,000,000

Count by 1 Count by 1,000,000

The Problem: You pick what you want to count by, and I’ll
pick my array big enough that your search will be really slow

P-4

P-19

Fixing The Problem

1000 1,000,000,000

If you count by any constant amount, I can pick an array big enough
to make your search really slow, so…

Don’t count by a constant

N/2N/2

P-20

Binary Search

N/2

• Array is assumed to be sorted (smallest to
largest)

• Compare search key with element in middle of
list

• If equal, done
• If element is less than the search key, restrict

search to the upper half of the original list
• Otherwise (element is greater than search key),

restrict to lower half
• SO, IN ONE STEP I ELIMINATE HALF

THE LIST, NO MATTER HOW BIG THE
LIST IS

P-21

Binary Search: Search Key = 33

-19

0

7

8

18

22

33

41

0

1

2

3

4

5

6

7

Element (0+7)/2

Hey, it’s the same problem:
Find the search key (33) in the
sorted list (elements 4 – 7)

Now what?

P-22

Binary Search: Search Key = 33

-19

0

7

8

18

22

33

41

0

1

2

3

4

5

6

7

Element (4+7)/2

P-23

Binary Search: Search Key = 33

-19

0

7

8

18

22

33

41

0

1

2

3

4

5

6

7

Element (6+7)/2
P-24

Binary Search Again: Search Key = -19

-19

0

7

8

18

22

33

41

0

1

2

3

4

5

6

7

Element (0+7)/2

Element (0+2)/2

Element (0+0)/2

P-5

P-25

Binary Search As a C Function

-19

0

7

8

18

22

33

41

0

1

2

3

4

5

6

7

Inputs: Sorted array
Upper index
Lower index
Search key

Output: Index of element, or
-1 if not found

P-26

int BinarySearch (int array[], int lowerBound, int upperBound, int searchKey)
{

int midPoint;
// this is the base case
if (upperBound<lowerBound) {

return -1;
}

midPoint = (lowerBound + upperBound)/2;
if (array[midPoint] == searchKey) {

return midPoint;
} else if (array[midPoint] < searchKey) {

return BinarySearch(array, midPoint+1, upperBound, searchKey);
} else {

return BinarySearch(array,lowerBound, midPoint-1, searchKey);
}

}

P-27

Arguing That This Is Correct: Invariants

A program invariant is a (useful) property of the program that
is “always true”

• Ideally, “always true” means just that, except for very
brief moments when a variable’s value is updated

• Can also mean “always true at the top of the loop” or
“always true at the bottom of the loop” or just “always
true at this particular point in the program”

Understanding your program’s invariants can be a
GIGANTIC help in writing error-free code.

P-28

Arguing That This Is Correct: Invariants

What is the important invariant in
int BinarySearch (int array[], int lowerBound, int upperBound, int searchKey)

If the searchKey is in the array, it’s located in the range
of elements [lowerBound, upperBound] (inclusive)

Is that true? I.e., is our claim about the invariant correct?
• Show that it’s true at the beginning
• Show that each step we take keeps it true

P-29

Arguing That This Is Correct: Invariants

If the searchKey is in the array, it’s located in the range
of elements [lowerBound, upperBound] (inclusive)

Show that it’s true at the beginning:
BinarySearch(array, 0, MAX, searchKey)

Show that each step we take keeps it true:
Assume it’s true now: BinarySearch(array, lb, ub, searchKey)

Because the array is sorted, if array(midPoint)<searchKey,
searchKey must in an element greater than midPoint ⇒
BinarySearch(array, midPoint+1, ub, searchKey)

P-30

Time: How Many Comparisons Are Needed?

Key observation: for binary search: size of the
array N that can be searched with k
comparisons: N ~ 2k

Number of comparisons k as a function of
array size N: k ~ log2 N

This is fundamentally faster than linear search
(where k ~ N) ⇒

log2 N is much, much smaller than N for big
enough N

P-6

P-31

Search Costs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0
10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00
0

11
00
0

12
00
0

13
00
0

14
00
0

15
00
0

16
00
0

17
00
0

18
00
0

19
00
0

20
00
0

21
00
0

22
00
0

23
00
0

24
00
0

25
00
0

26
00
0

27
00
0

N (# elements)

C
os
t(
#
o
p
er
at
io
n
s)

N

N/10

N/100

logN

P-32

Summary

• Linear search and binary search are two
different algorithms for searching an
array

• Binary search is vastly more efficient
–But binary search works only if the array
elements are sorted

• Looking ahead: we will study how to
sort arrays, that is, place their elements
in order

