

Overview

When do I use an array, and when do I use a structure?

General Rule

Array: Holds multiple instances of one logical value
Examples:

- Amount of rain each day during one week
- The MT2 grade of each student
- Number of shares of MSFT sold each trading day during 2000
- Number of shares sold on Dec. 12, 2000 of each company
listed on the NYSE
- Name of each driver in the Duralube 500

Array Examples

Examples:

- Amount of rain each day during one week
- The MT2 grade of each
student
- Number of shares of MSFT sold each trading day during 2000
- Number of shares sold on Dec. 12, 2000 of each company listed on the NYSE
- Name of each driver in the Duralube 500

Other Examples

- The number of salmon counted in the Cedar River each day of 1999
- The names of all the winners of the Nobel Prize in Literature
- The number of Ford Focuses on each Ford dealer's lot in Western Washington
- The number of Ford Focuses of each color on each Ford dealer's lot in Western Washington
mples:
- \{Amount of rain, average temperature, average relative humidity\} of one day
- \{Name, student ID, MT2 grade $\}$ of one student
- \{Total \#shares traded, high price, low price, avg. price $\}$ of MSFT on one trading day
- \{Company name, stock symbol, corporate address\} of one NYSE-listed company
- \{Driver name, primary sponsor name, age\} of one ${ }^{\text {R.s }}$ driver

The number of Ford Focuses of each color on each Ford dealer's lot in Western Washington

Array: Holds multiple instances of one logical value

Structure: Holds multiple characteristics of one logical instance

The number of Ford Focuses of each color on each Ford dealer's lot in Western Washington

Colors

Two indexing values: dealership and color

The number of Ford Focuses of each color on each Ford dealer's lot in Western Washington

Multi-Dimensional Arrays

Each dimension corresponds to some "selection criterion" - Color

- Dealership

All array entries tell you "the same logical value" for different selection criteria values

- Number of cars

Two "selection criteria": dealership and color R-9 One logical value: number of cars on lot

Multi-Dimensional Arrays

Other examples:

- The score of each student on each assignment in CSE 142 during Winter 2001
- The score of each student on each assignment in CSE142 (ever)

Multi-Dimensional Arrays in C

There's only one "logical value" being stored -> all elements of the array (must) have the same type.

The "selection criteria" have to be expressed as integers:

- If my array is "\# of cars vs. (color,dealership)", I need to map colors to integers and dealership to integers
- The number of copies of each book at each branch library of the Seattle Public Libraries
- The number of people arrested on each felony count during each hour between midnight and 4:00am of each day of the week of Mardi Gras

The "selection criteria" have to be expressed as integers

Two "selection criteria": dealership and color ${ }^{R-13}$ One logical value: number of cars on lot

2-Dimensional Arrays

Example: scores for 7 students on 4 homeworks
score hw $0 \quad 1 \quad 2 \quad 3$

student 0	22	15	25	25

student 1	12	12	25	20
	12			

12	25	20
-5	17	25

student 3	15	19	25	13
	2		score[6][3] is 12	

student 5	25	22	24	21	
		8	4	25	12

C expressions:
 score[0][0] is $\mathbf{2 2}$ R-14

Declaring a 2-D Array

\#define MAX_STUDENTS 80
\#define MAX_HWS 6
...
int score [MAX_STUDENTS] [MAX_HWS] ;

Bookkeeping

As with 1-D arrays, often we only use part of the space available in a 2-D array

Declared size of the array specifies its maximum capacity.

The current size (\# of rows and columns currently in use) needs to be kept track of in separate variables

Reading in Data

Problem: Read in data for student assignments
Input data format: The number of students, then the number of assignments, followed by the data per student

A nested loop is the right program structure for reading in the data details
int score [MAX_STUDENTS] [MAX_HWS] ;
int nstudents, nhws, \mathbf{i}, \mathbf{j};

Reading a 2-D Array: Code

l^{*} Read the number of students and assignments, then loop to read detailed data */
scanf ("\%d \%d", \&nstudents, \&nhws) ;
if (nstudents <= MAX_STUDENTS \&\& nhws <= MAX_HWS) \{
for ($\mathrm{i}=\mathbf{0}$; $\mathrm{i}<$ nstudents ; $\mathrm{i}=\mathrm{i}+1$)
for ($\mathrm{j}=\mathbf{0}$; j < nhws ; $\mathrm{j}=\mathrm{j}+1$)
scanf("\%d", \&score [i] [j]) ;
\}
Part of the array is unused; which part?

Array Input Trace

Input: 740123456789 ..
score $\left.\underset{i=0}{j=0} \begin{array}{rllllll}0 & 1 & 2 & 3 & 4 & 5\end{array}\right]$ $i=0$
$i=1$$\quad \begin{array}{rlllll}0 & 1 & 2 & 3 & ? & ?\end{array}$ $\begin{array}{llll}\mathrm{i}=2 & 4 & 5 & 6 \\ 8 & 9\end{array}$ $\mathrm{i}=6$ i=7 $i=7$? ? ? ? ...

Printing a 2-D Array

if (nstudents <= MAX_STUDENTS \&\&
nhws <= MAX_HWS) \{
for ($\mathbf{i}=\mathbf{0} ; \mathbf{i}<\mathbf{n s t u d e n t s} ; \mathbf{i}=\mathbf{i}+1$) $\{$
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{nhws} ; \mathrm{j}=\mathrm{j}+1$) $\{$
printf("\%d", score [i][j]);
$\}$
printf("ln") ;
\}
\}

2-D Arrays as Parameters

Same as $1-\mathrm{D}$ arrays (almost):

- Individual array elements can be either value or pointer parameters
- Entire arrays are always passed as pointer
parameters - never copied
- Don't use \& and * with entire array parameters

Difference:
No empty brackets [] in formal parameters Actually, [] allowed sometimes; we won't use in this course

2-D Array As Parameter

A function to read into array grades the grade information for the given number of students and assignments
void read_2D (int grades[MAX_STUDENTS] [MAX_HWS], int nstudents, int nhws)
\{...

Array Function Arguments

int main(void) \{
int scores [MAX_STUDENTS] [MAX_HWS] ;
int nstudents, nhws;
scanf ("\%d \%d", \&nstudents, \&nhws) ;
if (n nstudents <= MAX_STUDENTS \&\& nhws <= MAX_HWS)
read_2D (scores, nstudents, nhws) ;
\} \qquad no \&

Arrays of Structures

Structure: Holds multiple characteristics of one logical instance
Array: Holds multiple instances of one logical value
Examples:

- \{Amount of rain, average temperature, average relative humidity\} on each day of 2000
- \{Name, student ID, MT2 grade\} of each 142 student
- \{Total \#shares traded, high price, low price, avg. price\} of MSFT on each trading day of 2000
- \{Company name, stock symbol, corporate address\} of each NYSElisted company
- \{Amount of rain, average temperature, average relative humidity\} on each day of 2000
\#define MAXDAYS 366
typedef structure \{
double rainFall;
double avgTemperature; double relativeHumidity;
\} ClimateData;
ClimateData seattle2000[MAXDAYS];
seattle2000[0].rainFall $=1.1$;
seattle2000[365].avgTemperature $=45.2$;
\{Amount of rain, average temperature, average relative humidity\} on each day of each year of the 1900's
$\begin{array}{ll}\text { \#define MAXDAYS } & 366 \\ \text { \#define MAXYEARS } & 100\end{array}$
typedef structure \{
double rainFall;
double avgTemperature;
double relativeHumidity;
\} ClimateData;
ClimateData seattle[MAXYEARS][MAXDAYS];
seattle [0][0].rainFall $=1.1 ; \quad / / 1 / 1 / 1900$
seattle[99][365].avgTemperature $=45.2 ; \quad / / 12 / 31 / 1999 \quad$ R.28

[^0]
Structs Containing Arrays

A student record has:

- Student ID number
- Grade on each assignment

\#define MAXASSIGNMENTS
 10

typedef struct \{
int ID;
double grade[MAXASSIGNMENTS]; \} StudentRecord;

StudentRecord JZ;
$\mathrm{JZ.grade}[0]=0 ; \quad / /$ no points for JZ on first graded assignment

Arrays of Structs with Arrays...

\#define MAXASSIGNMENTS	10
\#define MAXSTUDENTS	600
typedef struct \{	
int \quad ID;	
\quad double grade[MAXASSIGNMENTS];	
\} StudentRecord;	
...	

StudentRecord allStudents[MAXSTUDENTS]; allStudents[20].grade[0] = 44;
scanf("\%lf", \&allStudents[33].grade[4]);

[^0]: - \{Amount of rain, average temperature, average relative humidity\} during each hour of each day of each year of the 1900 's
 \#define MAXHOURS 24
 \#define MAXDAYS 366
 \#define MAXYEARS 100 typedef structure \{
 double rainFall;
 double avgTemperature;
 double relativeHumidity;
 \} ClimateData;
 ClimateData seattle [MAXHOURS][MAXDAYS] [MAXYEARS];
 seattle [0][0][0].rainFall $=1.1$;
 // midnight to 1:00am 1/1/1900 Seattle[23][365][99].avgTemperature $=45.2 ; / / 11: 00 \mathrm{pm}$ to midnight $12 / 31 / 1999$

