
CSE142 Wi02 B-1

1/6/2002 (c) University of Washington, 2001-2 B-1

CSE 142

Introduction to Programming

1/6/2002 (c) University of Washington, 2001-2 B-2

Overview

• Topics
• Computers and Programming
• Thinking about programs

• Reading
• Dugan notes, ch. 1-3
• Niño & Hosch, ch. 1 (skim)

1/6/2002 (c) University of Washington, 2001-2 B-3

Hardware and Software

• Hardware: the physical machine
• CPU/processor, e.g. “Pentium”
• Memory/RAM
• Hard disk, floppy disk, CDROM, …
• Monitor, speakers, keyboard, mouse, …
• Network connection

• Hardware doesn’t do anything on its own; no personality
• Software, i.e., programs: electronic plans that instruct

the hardware how it should act; the personality
• Easy to change software, if we have good programmers!

1/6/2002 (c) University of Washington, 2001-2 B-4

Learning Programming

• Programming is both easier and harder than most
people make it out to be.
• Easier: Many of the things good programmers do well are

actually things all of us already do all the time, we just don't
know it.

• Harder: Programming is in large part a skill, even an art

• Programming is like any craft: it requires practice.
• Learning by doing vs. learning by reading about it
• Experiment: Not sure how something works? Try it and see.
• Don't be afraid to build things that you'll throw away later.

1/6/2002 (c) University of Washington, 2001-2 B-5

Programming as Communication

• With a program, we communicate with two important
entities:
• machines
• people

• The first is obvious
• The second may not be:

• Programs that don't work (bugs)
• Inherited code
• Program evolution

1/6/2002 (c) University of Washington, 2001-2 B-6

Reading vs. Understanding

• People and machines are very different.
• Machines are good are reading (details)

but bad at understanding (what is intended)
• People are good at understanding but bad at reading

• Read this:

Is our children learning?



CSE142 Wi02 B-2

1/6/2002 (c) University of Washington, 2001-2 B-7

Communicating with Computers and People

• Computers demand precision, logical thinking
• Being precise, complete, and logical (thinking like a machine)

is one thing that makes programming hard
• Computers offer speedy, mistake-free results

• People can fill in missing steps, but can get swamped by
lots of unorganized details and clutter
• Need to write programs so that can be understood by people,

e.g., your coworkers, your clients, yourself 3 months from now
• Invent abstractions: new vocabulary, short-hands
• Be organized, use good style

1/6/2002 (c) University of Washington, 2001-2 B-8

Example: Giving Directions

• Imagine giving campus directions:
• To another student
• To a tourist
• To a robot

• The student operates at a higher level of abstraction
with a richer vocabulary of short-hands

• An algorithm is a plan for how to accomplish a task
• A program is a software implementation of an algorithm

• Good algorithms (at any level of abstraction) require
precision

1/6/2002 (c) University of Washington, 2001-2 B-9

Metaphor: Programs as Directions

• One way to think about programming: a program is a
sequence of commands that brings about some action.

• E.g. telling a robot how to navigate around campus

1/6/2002 (c) University of Washington, 2001-2 B-10

Metaphor: Programs as Math

• We also can think of programs as executable math:
a program calculates some result for us.

• Consider:
Area = PI x Radius2

• We can employ such expressions in programs.
• Most of our intuitions and knowledge about

mathematics apply to computers.
• Programs can compute more interesting things than just

numbers, though
• Sound, graphics, text, …

1/6/2002 (c) University of Washington, 2001-2 B-11

Metaphor: Programs as Simulations

• We also can think of programming as creating or
simulating both real and virtual worlds.

• We can define things in our programs that model the
things in our world. We call these things objects.

• Programs are plastic: they are easy to mold to our
wishes
• Can be free of the constraints of real life!

• The limit of plasticity: big programs become as hard to
work with as real-world entities


