
CSE142
A World of Objects

CSE142 Wi02 C-1

1/6/2002 (c) University of Washington, 2001-2 C-1

CSE 142

A World of Objects

1/6/2002 (c) University of Washington, 2001-2 C-2

Overview

• Topics
• Objects and naming
• Interpreters – executing statements
• Kinds of objects

• Reading
• Dugan notes, Ch. 4
• Niño & Hosch, Ch. 2, Sec. 3.2-3.3 (reference for syntactic

details about names and numbers)

1/6/2002 (c) University of Washington, 2001-2 C-3

Introduction

• Java lets us build simulations of the world. The things
in this simulation are called values or objects.

• Objects are just like what we think of as objects.
• Chairs, apples, people, desks, bank accounts, cars, planes, …

• Objects can have parts, which are just other objects.
• The human body, a car, this room

• Objects are animated. They can respond to messages
that we send them.

• Objects can be referred to by name. Several names can
be given to the same object.

1/6/2002 (c) University of Washington, 2001-2 C-4

Number Objects

• Numbers are a simple kind of object in Java:
3
7.5

-234.657

• Java numbers come in two main types:
• Integers
• Rational numbers (written with a decimal point)

• We can do arithmetic on numbers:
3 + 4 / 2

200 + 30.5 * (10 – 3.1415927)

1/6/2002 (c) University of Washington, 2001-2 C-5

Jeva: A Java Interpreter

• Our first tool is called an interpreter
• An interpreter is similar to a human language interpreter

who will translate your conversation with a speaker of
another language

• It does the following (forever):
• Reads what you type.
• Translates it and executes or evaluates it.
• Prints the result for you.

• Let's try some examples.

1/6/2002 (c) University of Washington, 2001-2 C-6

Tools In Pictures: Interpreter

Interpreter A Machine

Programmer

CSE142
A World of Objects

CSE142 Wi02 C-2

1/6/2002 (c) University of Washington, 2001-2 C-7

Naming Numbers
• Sometimes we want to give names to the numbers we calculate.
• In Java we name something using this pattern (a declaration):

<the type of thing> <the name> = <the thing we're naming> ;

• Can then refer to the something just by using the name.
• Types of numbers we’ll be using:

• int, for integers
• double, for rational numbers

• Examples of this declaration pattern:
int radius = 10;

double pi = 3.1415927;
double area = pi * radius * radius;

• Draw pictures.

1/6/2002 (c) University of Washington, 2001-2 C-8

Shape Objects
• Many graphics-oriented programs manipulate shapes.
• Let's create some shapes and windows:

new Triangle()
new Rectangle(200, 50, 100, 10) (left x, top y, width, height)
new GWindow()

• We use the following patterns for creating new objects:
new <type of object>(<optional list of parts or attributes>)

• Some objects, like numbers, are just written down directly, not created
fresh: 3 vs. new int()

• We usually should give newly created objects a name:
GWindow w = new GWindow();
Rectangle kaneHall =

new Rectangle(50, 150, 250, 200, Color.red, true); (x, y, w, h, color, filled?)
Oval sun = new Oval(200, 50, 35, 35, Color.yellow, true); (x, y, w, h, color, filled?)

1/6/2002 (c) University of Washington, 2001-2 C-9

Sending Messages

• We get objects to do things, or answer questions, or
calculate results for us, by sending them messages
• Also called invoking a method

or (in other languages) calling a function

• We use the following pattern for sending a message:
<object name> . <message name> (<optional list of parameters>)

• Examples:
sun . getX ()

sun . addTo (w)

sun . moveBy (30, -20)

1/6/2002 (c) University of Washington, 2001-2 C-10

Drawing a Scene

• To draw a nice picture, first create a window:
GWindow w = new GWindow();

• Then create a shape object, and add it to the window:
Line horizon = new Line(50, 200, 200, 200, Color.green); (x1, y1, x2, y2, color)

horizon.addTo(w);

• Create and add more shapes:
Oval sun = new Oval(100, 175, 35, 25, Color.orange, true); (x, y, w, h, c, f?)

sun.addTo(w);

Rectangle deadTree = new Rectangle(150, 150, 10, 50); (x, y, w, h)

deadTree.addTo(w);

Rectangle tallBuilding = deadTree;

1/6/2002 (c) University of Washington, 2001-2 C-11

The Inspector

• We can peek inside of objects by using the inspector.
• The inspector is just a Java object that knows how to

look inside of other objects.
• Example:

OBrowser . inspect (sun);

sun . moveBy (10, -10);

OBrowser . inspect (sun);

1/6/2002 (c) University of Washington, 2001-2 C-12

Text Objects

• Many programs need to manipulate text, so Java
provides us with Strings for this purpose.

• Examples:

String myName = "Bill Shakespeare";

String myBook = "As You Like It, or As You Wish It Were (I think?)";

myName.length()

myName.charAt(2)

myName + " wrote " + myBook

CSE142
A World of Objects

CSE142 Wi02 C-3

1/6/2002 (c) University of Washington, 2001-2 C-13

Character Values

• Character objects (type “char”):
char someChar = 'A';
char anotherChar = 'b';

String name = "Billy";

String anotherName = name.replace('B', 'W');

1/6/2002 (c) University of Washington, 2001-2 C-14

Truth Values

• Truth value objects (type “boolean”):
• Only possible values are true and false

Rectangle hollowRect = new Rectangle(0, 0, 40, 50, Color.green, false);

boolean filled = true;

Rectangle filledRect = new Rectangle(0, 0, 40, 50, Color.green, filled);

1/6/2002 (c) University of Washington, 2001-2 C-15

Collection Objects

• Many programs need to represent collections of objects.
• Suppose I want to build a list of students in Java. Here's

one way:

ArrayList students = new ArrayList();

students.add("Bob");

students.add("Jill");

int classSize = students.size();

1/6/2002 (c) University of Washington, 2001-2 C-16

Summary: Kinds of things we've seen

Oval sun = new Oval();shapesOval etc.

ArrayList list = new ArrayList();collections of thingsArrayList

String name = "Bill";

boolean filled = true;

char letter = 'x';

double y = 34.0;

int x = 34;

Example:

textString

truth valuesboolean

individual characterschar

rational numbersdouble

integersint

Used to representJava type

