CSE 142

Expressions and Statements

Expressions

- Look at this statement:

Rectangle rect $=$ new Rectangle($10,20,30,40$);

- Remember our pattern for naming:
<the type of thing> <the name> = <the thing we're naming>;
- What is the stuff on the right of the ' $=$ "? We call it an expression.
- We evaluate an expression to compute a value.
- The name is then bound to the value of the expression.
$\begin{array}{lll}1 / 9 / 2002 & \text { (c) University of Washington 2001-2 } & \text { D1-3 }\end{array}$

Statements

- Most programs need to do a sequence of things. In Java, we do this by writing a sequence of statements:

$$
\begin{aligned}
& \text { int side = 20; } \\
& \text { Rectangle aSquare = new Rectangle(side, side, 100, 200); } \\
& \text { aSquare.moveBy }(35,10) \text {; }
\end{aligned}
$$

- A semicolon terminates a statement. Semicolons are like the "." (period or full stop) in written English.
- The machine evaluates one statement at a time.
- Unlike expressions, a statement is evaluated for effect, not value.

$$
\begin{array}{lll}
\hline 19 / 2002 & \text { (c) University of Washington 2001-2 } & \text { D1-5 }
\end{array}
$$

Overview
• Quick Review:
• Creating and using objects
• Naming objects
• Sending messages
- New
• Reinforce the above concepts
• Get a little bit more formal
- Reading
• Dugan notes: first part of Ch. 5
• Niño \& Hosch: sec. 5.2 .2

Legal Expressions
- What are legal expressions?
- a literal representation of a value
• the creation of a new object
- a name of an object (also called an identifier or variable name)
- the result of sending a message to an object
- combinations of the above (we'll see how to combine them later)
- Examples
1 "hello" aSquare aSquare.getX() new Rectangle(10, 20, 30, 40)

Arithmetic Operators

- Java provides arithmetic operators so we can build mathematical expressions:

Symbol	Meaning	Example	Value (if $\mathrm{y}=11$)
+	add	$\mathrm{y}+5$	16
-	subtract	$\mathrm{y}-5$	6
$*$	multiply	y *5	55
$/$	divide	$\mathrm{y} / 5$	2
$\%$	remainder	$\mathrm{y} \% 5$	1

	(c) University of Washington 2001-2	D1-6

Precedence
- Precedence follows normal math rules. What are they?
- If you're unsure, or wish to override, use parentheses.
int $x=2 ;$ int $\mathrm{y}=4 ;$ int $\mathrm{m}=\mathrm{x}+\mathrm{y} *$ int $\mathrm{n}=(\mathrm{x}+\mathrm{y})^{*} 8 ;$
$1 / 9 / 2002$

Division		
- Division seems a little strange in Java. -What is 5 divided by 2 ?		
$\begin{aligned} & \text { int } x=5 ; \\ & \text { inty } y=x / 2 ; \end{aligned}$		
- Division between integers is integer division (no fractions)!		
- If you want the remainder, use the $\%$ operator. - If you want to represent a fractional amount, use a different kind of number (like a double)		
192002	(c) Univesity of ivasingion 200-2	${ }^{019}$

