
CSE142 Wi02 D2-1

1/9/2002 (c) University of Washington, 2001-2 D2-1

CSE 142

Types and Messages

1/9/2002 (c) University of Washington, 2001-2 D2-2

Overview

• Topics
• Types
• Type compatibility
• Syntax and semantic errors
• Messages and interfaces; parameter lists

• Reading
• Dugan notes: middle of ch. 5

1/9/2002 (c) University of Washington, 2001-2 D2-3

Types

• Some expressions:
"hello"
aSquare

aSquare.getColor()

aSquare.getX() * 24

• What kind of thing does each expression evaluate to?
• Java calls "kinds of things" types.
• When we create a new name, we must always specify a

type:
String greeting = "hello";

1/9/2002 (c) University of Washington, 2001-2 D2-4

Type Mismatches

• What's wrong with this sentence: "Her age is green."
• Java is extremely picky about these kinds of errors,

which we call type mismatches. For example:

int myAge = "green";

String greeting = 23;

• Why do you think that Java is picky about this kind of
thing?

1/9/2002 (c) University of Washington, 2001-2 D2-5

Kinds of Errors
• Some odd sentences:

• They has went, to Tibet to "climbed mountain.)
• Curious green ideas sleep furiously.
• To get a good grade, you should skip lecture.

• Each of these is wrong in some way:
• The first has syntax errors (grammar and punctuation mistakes).
• The second has semantic errors (misuse of types): we don't think of ideas

has having colors, or sleep being furious, etc.
• The third is a broken algorithm: it doesn't accomplish the task we intended.

• The Java interpreter catches syntax and semantic errors
automatically.

• Broken algorithms must be found by the programmer through
thinking or testing.

1/9/2002 (c) University of Washington, 2001-2 D2-6

Syntax & Semantic Errors
• What is wrong with each of these statements?

Syntax or semantics or algorithm?

int x is 7;

String myName = 7;

aSquare.moveBy("hello", 40);

int velocity = distance / time

String greeting = "hello" 56;

int area = length * "width";

double blackHoleGravity = mass / 0.0;

CSE142 Wi02 D2-2

1/9/2002 (c) University of Washington, 2001-2 D2-7

Message Parameters
• Many messages require some information:

aRectangle.moveBy(10, 20);

• We call the items we send with a message parameters or
arguments.

• Each parameter may be any expression, however complicated, as
long as the type and number of parameters matches what the
message expects:

aRectangle.moveBy(10 + length * 2, aRectangle.getY() + 5);
aRectangle.moveBy("hello", 20);

aRectangle.moveBy(30);

1/9/2002 (c) University of Washington, 2001-2 D2-8

Message Interface
• How do we know the right way to send a message? How

do we know what messages an object can respond to?
• To really know (and how Java knows): look at the

object's interface.
• An interface defines: message name, number, type of

parameters, and type of the resulting value. It often also
has commentary about the behavior of the object when
it receives the message.

• JavaDoc is a tool for generating web pages from Java
code describing their interfaces. See course web for
documentation on Rectangle, etc.

1/9/2002 (c) University of Washington, 2001-2 D2-9

Message Interface: Examples
• An excerpt from the moveTo message for Rectangle:

moveTo
public void moveTo(int x,

int y)
Move the upper-left corner of the rectangle to the given coordinates.
Parameters:

x - new X coordinate.
x - new Y coordinate.

• What does void mean?

• An excerpt from the length message for String (java.lang.String):
length
public int length()

Returns the length of this string.
Returns:

the length of the sequence of characters represented by this object.

1/9/2002 (c) University of Washington, 2001-2 D2-10

Compound Names

• We've seen lots of names that are single words, e.g.:
x, length, aSquare

• Sometimes we'll have to use compound names, which
are words linked by dots, e.g.:

Color.green

Math.sqrt(3.4)

System.out.println("hello, there!");

java.lang.String

• Compound names can only be used in special cases.

