
CSE142
Methods

CSE142 Wi01 G-1

1/17/2002 (c) University of Washington, 2001-2 G-1

CSE 142

Methods

1/17/2002 (c) University of Washington, 2001-2 G-2

Overview
• Quick Review

• Defining classes, instance variables, and constructors

• Today
• Defining methods
• Parameters
• Method execution
• Introduction to Debugging
• Comments and Documentation

• Reading
• Dugan notes: Ch. 7, all of Ch. 9
• Niño & Hosch: Sec. 5.2

1/17/2002 (c) University of Washington, 2001-2 G-3

Drawing House Objects

• Want to be able to send a House object a message, e.g.
addTo:

House h = new House();

GWindow w = new GWindow();

h.addTo(w);

• But House objects don't yet know how to respond to the
addTo message!

• We have to write an addTo method (or function, or
procedure) in the House class that defines how Houses
respond to addTo.
• How? By adding the House’s frame and roof to a GWindow!

1/17/2002 (c) University of Washington, 2001-2 G-4

A Method
• Inside the House class in House.java:

/** Add this House to a drawing window
* @param gw The window the house should be displayed on */
public void addTo(GWindow gw) {

this.frame.addTo(gw);
this.roof.addTo(gw);

}

• Pattern, if message has one argument and no result:
/** comment explaining method and its parameters */
public void <message name> (<argument type> <argument name>) {

<statements to execute when message received>
}

• In a method, "this" names the object that received the message.
• "this" and argument name are local scratch variables, created

when the method is invoked, and thrown away when it finishes.

1/17/2002 (c) University of Washington, 2001-2 G-5

Invoking Methods, in Detail
To evaluate a message like

home . addTo (aWindow)

Java goes through the following steps:
1. Evaluate the receiver object and argument expressions, to

compute the receiver and argument objects
2. Find the method in the class of the receiver object
3. Create a scratch area for running the method
4. In the scratch area:

1. bind "this" to the receiver object
2. bind the argument name (if any) to the argument object

5. Run the method's body
6. Throw away the scratch area and its bindings

1/17/2002 (c) University of Washington, 2001-2 G-6

Testing Method addTo

• In Jeva, we could just type the following
House home = new House();
GWindow theWindow = new GWindow();

home.addTo(theWindow);

• Where do we put this code in BlueJ?
• Unfortunately it’s hard to create instances of library classes

directly in BlueJ LLLL

• Solution: Place the test code in the constructor of
another class that serves as the “test program”
• We will replace this later with a standard Java main program,

but we want to avoid some of the technicalities for now

CSE142
Methods

CSE142 Wi01 G-2

1/17/2002 (c) University of Washington, 2001-2 G-7

Test Code for addTo
import uwcse.graphics.*;

/** Test class that, when created, draws a scene in a window */

public class TestScene {

/** Initialize a new TestScene object,

* which draws the scene on a new window */
public TestScene() {

GWindow gw = new GWindow();

House abode = new House();

abode.addTo(gw);

}

}

• Now we can test addTo by creating a TestScene object!

1/17/2002 (c) University of Washington, 2001-2 G-8

Diagramming Execution of addTo

1/17/2002 (c) University of Washington, 2001-2 G-9

The Debugger

• We can watch a program execute using a debugger.
• Every debugger supports the following four fundamental

concepts:
• We can set a breakpoint. Execution pauses when a breakpoint

is reached
• At a breakpoint, we can continue execution.
• At a breakpoint, we can make our program take a single step

To the next statement (step over), or

Into a method that we're calling (step into)

• At a breakpoint, we can inspect data.

1/17/2002 (c) University of Washington, 2001-2 G-10

Tools in Pictures: The Debugger

Text Editor

Compiler
source file

(e.g.
AClass.java)

compiled code
(e.g.

AClass.class)

Programmer

The Debugger

1/17/2002 (c) University of Washington, 2001-2 G-11

Debugging in BlueJ
• Process:

• Double-click on a class to look at its Java source code
• Click in the left white column next to lines where you want execution to

stop: breakpoints
• Then run code (e.g. create objects, send messages)

• If a breakpoint is reached, a debugger window appears, showing
the current values of local variables and instance variables of the
receiver object.

• You can step (over), step into, continue, or terminate
• You can set or remove breakpoints
• You can inspect the objects that the variables refer to

• Testing strategy when you first run something: set a breakpoint at
the start and watching what it does as you step.

1/17/2002 (c) University of Washington, 2001-2 G-12

Documentation

• Raw code isn't always clear to human readers.
• What is the code intended to accomplish?
• What are the messages I can send to a class in a library?

• Need to write comments and other documentation to
describe the interface and explain the algorithm to
humans.

• Java has two ways of writing comments:
// This is a comment to the end of the line

/* This is a

comment than

can go over multiple lines */

CSE142
Methods

CSE142 Wi01 G-3

1/17/2002 (c) University of Washington, 2001-2 G-13

Documenting Constructors and Methods
• The JavaDoc tool looks for comments starting with /** and makes

a web page of documentation of the class.
/** A class for House shapes. */
public class House {

/** Create a new House shape. */
public House() { … }
/** Display a house on a window.

@param gw the window where the house is to be displayed */
public void addTo(GWindow gw) { … }

}

• Before each class, constructor, and method, explain what it does,
and its arguments and results (if any).

• Should never need to read code to figure out how to use something

• Select “interface” in BlueJ editor window to see the doc pages

1/17/2002 (c) University of Washington, 2001-2 G-14

Tools In Pictures: JavaDoc

Text Editor

JavaDoc
source file

(e.g.
AClass.java)

Programmer

interface
description

(e.g.
AClass.html)

1/17/2002 (c) University of Washington, 2001-2 G-15

A Constructor With Arguments

• We'd like to be able to create other House objects, but at
different parts of the screen.

• Want another constructor, but with arguments to say
where the house should be located.

• Question:
• What are the arguments and their types that we want to pass to

the constructor?

1/17/2002 (c) University of Washington, 2001-2 G-16

The New Constructor
public class House {

Rectangle frame;
Triangle roof;
public House() { … }

}

1/17/2002 (c) University of Washington, 2001-2 G-17

Another Message: moveBy

• We can tell a Rectangle to shift its position by sending it
the moveBy message.

• We might want to allow users of House objects to tell a
House to move, also.

• Questions:
• How do we make House objects understand a new message?
• What are the arguments and their types that we want to pass

with the message?
• Do we expect any value to be computed and returned by the

message? If so, what is its type?

1/17/2002 (c) University of Washington, 2001-2 G-18

The moveBy Method
public class House {

Rectangle frame;
Triangle roof;
public House() { … }
public void addTo(GWindow w) { … }

}

CSE142
Methods

CSE142 Wi01 G-4

1/17/2002 (c) University of Washington, 2001-2 G-19

Another Message: getX()

• We can ask a Rectangle to tell us its x-coordinate by
sending it the getX() message (getY() is similar).

• We might want to allow users of House objects to ask
the same question.

• Questions:
• How do we make House objects understand a new message?
• What are the arguments and their types that we want to pass

with the message?
• Do we expect any value to be computed and returned by the

message? If so, what is its type?

1/17/2002 (c) University of Washington, 2001-2 G-20

The getX Method
public class House {

Rectangle frame;
Triangle roof;
public House() { … }
public void addTo(GWindow w) { … }
public void moveBy(int deltaX, int deltaY) { … }

}

1/17/2002 (c) University of Washington, 2001-2 G-21

Return Statements

• To return a computed value back to a caller, use a return
statement.

• Pattern:
return <expression> ;

• All methods with non-void result types should end in a
return statement! No other methods should!

• Senders can give the returned value a name:
House h = new House();

int houseX = h.getX();

1/17/2002 (c) University of Washington, 2001-2 G-22

Protecting an Object's Fields

• Implementation details of an object should not be
accessible outside the class (why?)

• To protect an object's fields (parts) from outside access,
we can declare that they are private

public class House {

private Rectangle frame;

private Triangle roof;

…

}

• This makes outside accesses illegal
• Good practice: always protect instance variables in the future

1/17/2002 (c) University of Washington, 2001-2 G-23

Summary

• In the last week we’ve seen a bunch of colossal ideas
• Defining new classes
• Constructors
• Methods
• Parameters & results
• Documentation & comments

• Lots to absorb all at once
• Key concepts behind software development and

programming
• We’ll build on this throughout the rest of the course

