
1/31/2002 (c) University of Washington, 2001-2 G2-1

CSE 142

Classes and Updating Instance Variables
(updated)

1/31/2002 (c) University of Washington, 2001-2 G2-2

Overview
• Review

• Class declarations
• Constructors and Methods
• Variable declaration and assignment (binding)

• Today
• Defining a class
• Public and private class members
• Updating bindings – assignments that change variables

• Reading
• Dugan notes: part of ch. 6, 7
• Niño & Hosch: ch. 5

1/31/2002 (c) University of Washington, 2001-2 G2-3

A Scenario
• Suppose we want to define a class to represent bank

account objects
• Design issues

• What sort of behavior should it provide, i.e., what messages
should it understand (what methods and parameters)?

• What sort of instance variables are needed, i.e., what kind of
data needs to be stored in a BankAccount object? (This
collection of instance variables is often called the object’s
state.)
What are appropriate types for those variables

1/31/2002 (c) University of Washington, 2001-2 G2-4

Design Your Bank Account Here

1/31/2002 (c) University of Washington, 2001-2 G2-5

Notes

1/31/2002 (c) University of Washington, 2001-2 G2-6

Check: Does the Interface Make Sense
• Before investing in detailed coding, try the code out

from the client’s (user’s) perspective
• Does the object have the behavior we need? Anything

missing?
BankAccount checking =

new BankAccount(“Bill”, 0001, 41620000000.0);
checking.deposit(17.42);
double currentBalance =

checking.getBalance();

1/31/2002 (c) University of Washington, 2001-2 G2-7

Implementation – Instance Variables
• What sort of data do we need? What are the types?

// instance variables
private String accountName; // account holder’s name
private int accountNumber; // account number
private double balance; // balance in US dollars

• Review: These are declarations without assignment of initial
values

1/31/2002 (c) University of Washington, 2001-2 G2-8

Visibility: Public & Private
• Public vs private: all members of a class (instance

variables and methods) can be labeled public or private
• public: can be directly accessed anywhere the class or its

instances can be used
• private: can only be accessed by code inside the class itself

• Design rules
• Constructors and methods that are part of the class interface

(or specification) should be public
• Everything else should be private

• Leads to better modularity; limits possibilities for bugs

1/31/2002 (c) University of Washington, 2001-2 G2-9

Constructors
• A well-designed class almost always contains one or

more constructors
• Executed automatically when a new instance of the class is

created
• Allows programmer of the class to guarantee that new

instances are properly initialized
(Other code in the class can rely on this having been done)

1/31/2002 (c) University of Washington, 2001-2 G2-10

Constructors for BankAccount
/** Construct a new BankAccount
* @param accountName name of this account
* @param accountNumber number of this account
* @param initialBalance initial balance of this account */
public BankAccount(String accountName, int accountNumber,

double initialBalance) {
this.accountName = accountName;
this.accountNumber = accountNumber;
this.balance = initialBalance;

}

• Note use of this.name to refer to instance variables, while name
refers to parameter (local name) of the constructor

1/31/2002 (c) University of Washington, 2001-2 G2-11

Multiple Constructors
• A class may have many constructors

• Must differ in number or types of parameters (or both)
• Compiler picks correct constructor depending on number and

type of arguments when object is created (new)
/** Construct a new BankAccount with a balance of 0.0
* @param accountName name of this account
* @param accountNumber number of this account */
public BankAccount(String accountName, int accountNumber) {

this.accountName = accountName;
this.accountNumber = accountNumber;
this.balance = 0.0;

}

1/31/2002 (c) University of Washington, 2001-2 G2-12

Using Private Methods
• Observation: The two constructors contain almost

identical (redundant) code
• Design principle: take redundant code and turn it into a

(possibly parameterized) method
• Do things only once in one place – less chance for errors,

easier to modify, etc.

• If the new method is not part of the public interface of
the class, it should be private, so code outside the class
can’t access it

1/31/2002 (c) University of Washington, 2001-2 G2-13

Private Method to Initialize BankAccounts
/* Initialize this BankAccount
* @param accountName name of this account
* @param accountNumber number of this account
* @param initialBalance initial balance of this account */
private void initialize(String accountName, int accountNumber,

double initialBalance) {
this.accountName = accountName;
this.accountNumber = accountNumber;
this.balance = initialBalance;

}

• The method name is arbitrary; initialize seems like a good
choice here

1/31/2002 (c) University of Washington, 2001-2 G2-14

Modified Constructors
/** Construct a new BankAccount
* @param accountName name of this account
* @param accountNumber number of this account
* @param initialBalance initial balance of this account */
public BankAccount(String accountName, int accountNumber,

double initialBalance) {
this.initialize(accountName, accountNumber, initialBalance);

}
/** Construct a new BankAccount with a balance of 0.0
* @param accountName name of this account
* @param accountNumber number of this account */
public BankAccount(String accountName, int accountNumber) {

this.initialize(accountName, accountNumber, 0.0);
}

1/31/2002 (c) University of Washington, 2001-2 G2-15

Accessor Methods
• Instance variables should be private. If the client (user)

code needs access to the values of these variables,
supply value-returning methods to provide this access

/** Get the balance of this account
* @return current account balance in dollars
*/
public double getBalance() {

return this.balance;
}

• Naming convention: a method that returns the value of field
named, say, xyzzy, is named getXyzzy

1/31/2002 (c) University of Washington, 2001-2 G2-16

Declaration and Assignment Reviewed (1)
• We’ve seen two patterns for creating names and binding

them to values
• A declaration with an initial value

<type> <name> = <expression>;

both introduces a new name and specifies its value
• Execution

(0) create the name
(1) evaluate the <expression>
(2) bind the <name> to the value of the <expression>

1/31/2002 (c) University of Washington, 2001-2 G2-17

Declaration and Assignment Reviewed (2)
• A declaration may omit the initial value

<type> <name>; // typical for class instance variables

• A variable declared this way may be bound to a value
later using an assignment statement (often in a
constructor or a method called by a constructor)

<object name> . <name> = <expression>;

• Execution of an assignment statement
(1) Evaluate the expression
(2) Bind the <name> to the value of the <expression>
• Any <names> appearing in the <expression> must have been

previously initialized

1/31/2002 (c) University of Washington, 2001-2 G2-18

Using Assignment to Change Bindings
• An assignment statement may also be used to change

the value bound to a variable
• Can be used to rebind the value of both instance variables or

local variables in methods
• Pattern for assignment to local variables (names) in a method

<name> = <expression>;

• Pattern for assignment to object’s instance variable
<object name> . <instance variable name> = <expression>;

• Same execution: (0) evaluate <expression>, (1) bind <name>
• The name being assigned may appear in the <expression> (!)

No ambiguity: the old value is used to evaluate the expression, then the name is
rebound to the new value. !

1/31/2002 (c) University of Washington, 2001-2 G2-19

BankAccount setName Method
• Client code may need to be able to change the name of

an account
/** Change the name of this BankAccount
* @param newName new name for the account
*/
public void setName(String newName) {

this.accountName = newName;
}

• Naming convention: a method that changes the value
associated with field xyzzy is normally named setXyzzy

1/31/2002 (c) University of Washington, 2001-2 G2-20

BankAccount Deposit Method
/** Deposit money in this BankAccount
* @param amount amount of money to be deposited
*/
public void deposit(double amount) {

this.balance = this.balance + amount;
}

• Be sure you understand how execution of this method works!
• Be sure you understand why the following statement makes

sense and what it does:
this.balance = this.balance + 1;

1/31/2002 (c) University of Washington, 2001-2 G2-21

BankAccount Withdraw Method
/** Withdraw money from this BankAccount
* @param amount amount of money to withdraw
* @return amount of money withdrawn from account
*/
public double withdraw(double amount) {

this.balance = this.balance - amount;
return amount;

}

• What if the amount is greater than the current balance?
• Maybe it would be nice to detect this and react appropriately…

1/31/2002 (c) University of Washington, 2001-2 G2-22

Transfer Money Between Accounts
• Idea: given two bank accounts

BankAccount student = new BankAccount(“Huskie”, 0154738, 17.42);
BankAccount parents = new BankAccount(“Mom & Dad”, 148099, 2543.12);

would like to have a method to transfer funds from one
account to another

parents.transferTo(student, 250.00);

1/31/2002 (c) University of Washington, 2001-2 G2-23

Method transferTo
/** Transfer funds from this account to another
* @param destination BankAccount to receive funds from this account
* @param amount amount to transfer */
public void transferTo(BankAccount destination, double amount) {

// deduct balance from this account
this.balance = this.balance – amount;
// increase balance of destination account
destination.balance = destination.balance + amount;

• Method transferTo has access to private instance variables of
both accounts since it is a method in class BankAccount

• But what if there isn’t enough money in the original account?

