
CSE142
Making Decisions

CSE142 Wi02 I-1

2/3/2002 (c) University of Washington, 2001-2 I-1

Making Decisions

CSE 142

2/3/2002 (c) University of Washington, 2001-2 I-2

Overview

• Quick Review:
• Classes, objects, methods, messages

• Today:
• Making decisions – if statements
• Decision trees
• Comparison operators
• Boolean operators

• Reading
• Dugan notes ch. 10
• Niño & Hosch ch. 6

2/3/2002 (c) University of Washington, 2001-2 I-3

Decisions – Conditional Execution
• So far, we only have the ability to execute statements (including

method calls) one after the other
• Almost any real program needs to be able to make decisions

during execution
• Check whether there’s enough money in the account for a withdrawal

request
• If it’s dark outside, turn on the lights
• If the temperature is less than 68, turn on the furnace
• Make sure a House doesn't move off the edge of the screen

• Java, like any interesting programming language, allows
statements to be executed conditionally, depending on the value
of some boolean (test) expression

2/3/2002 (c) University of Washington, 2001-2 I-4

Buying Beer

• Convenience store owners use this algorithm:

Check the buyer's ID.

If it says they are at least 21, sell them beer, otherwise send them home.

• How can we say this in Java?

2/3/2002 (c) University of Washington, 2001-2 I-5

A Decision Tree

• It helps to visualize our algorithm:

send them
home

sell them
beer

noyes

21 or
over?

2/3/2002 (c) University of Washington, 2001-2 I-6

Expressing a Decision Tree in Java
• Expressing this in Java

/** Sell beer to the customer if the age on his/her ID is >= 21
* @param person Object representing the customer */
public void checkID(Customer person) {

// get person’s age
int age = person.ageOnID();
// sell beer if over 21
if (age >= 21) {

this.sellBeer();
} else {

this.sendHome(person);
}

}

CSE142
Making Decisions

CSE142 Wi02 I-2

2/3/2002 (c) University of Washington, 2001-2 I-7

The if Statement Pattern
• We use this pattern for our decisions:

if (<test-expression>) {
<statements to do if test is true>

} else {
<statements to do if test is false>

}

• <test-expression> is any expression of boolean type.
• Can have one, several, or even zero statements in each branch

of the if statement.

false
stmts

true
stmts

false?true?

test-
expressio

n

2/3/2002 (c) University of Washington, 2001-2 I-8

Comparing Numbers
• Java provides operators for comparing numbers:

• Comparison expressions compute answers of type boolean.
• Comparison operators have lower precedence than + etc.

=

≠≠≠≠

≤≤≤≤

≥≥≥≥

<

>

Math
Symbol

y != 5not equal to!=

y >= 11greater than or equal to>=

y <= 10less than or equal to<=

y == 5equal to==

y < 5less than<

y > 5greater than>

Value if y is 11ExampleMeaningJava
Operator

2/3/2002 (c) University of Washington, 2001-2 I-9

An Enhanced Algorithm

• This is closer to the real algorithm used:
If the customer looks at least 30, sell them beer.
Otherwise, check the buyer's ID.

If it says they are at least 21, sell them beer, otherwise send them home.

• Draw the decision tree:

2/3/2002 (c) University of Washington, 2001-2 I-10

The Algorithm in Java

• Here's the enhanced algorithm again:
If the customer looks at least 30, sell them beer.
Otherwise, check the buyer's ID.

If it says they are at least 21, sell them beer, otherwise send them home.

• Implement it in Java:

2/3/2002 (c) University of Washington, 2001-2 I-11

Checking a Series of Conditions

• If you're checking a series of conditions, and taking the
first one that's true, then we can write it more compactly.

if (person.apparentAge() >= 30) {

this.sellBeer();

} else if (person.ageOnID() >= 21) {

this.sellBeer();

} else {

this.sendHome(person);

}

2/3/2002 (c) University of Washington, 2001-2 I-12

The if-else if-else Statement Pattern
• We use this pattern for testing a series of conditions:

if (<first-test-expression>) {
<statements to do if first test is true>

} else if (<next-test-expression>) {
<statements to do if previous test is false but this test is true>

} else if (<next-test-expression>) {

<statements to do if previous tests are false but this test is true>
…

} else {
<statements to do if all tests are false>

}

• Draw decision tree.

CSE142
Making Decisions

CSE142 Wi02 I-3

2/3/2002 (c) University of Washington, 2001-2 I-13

Or Expressions

• Here's a different way to think about selling beer:
If either the customer looks at least 30 or their ID says they are at least 21,
sell them beer, otherwise send them home.

• We can say "or" in a test expression by using the ||
operator:

if (person.apparentAge() >= 30 || person.ageOnID() >= 21) {

this.sellBeer();

} else {

this.sendHome(person);
}

2/3/2002 (c) University of Washington, 2001-2 I-14

And Expressions
• What if we want to check if age is between between 21 and 30?
• We could write:

if (age >= 21) {

if (age < 30) {
this.checkID(person);

} else {
}

} else {
}

• We can say "and" in a test expression by using the && operator:
if (age >= 21 && age < 30) {

this.checkID(person);
} else {
}

2/3/2002 (c) University of Washington, 2001-2 I-15

Boolean Operators
• Operators for combining boolean expressions:

• Precedence: ! highest, && low (below < etc.), || lowest

! (y > 5)
not

(true when
operand is false)

!

(y < 5) || (y == 11)
or

(true when either or both
operands are true)

||

(y > 5) && (y < 11)
and

(true when
both operands are true)

&&

Value if y is 11ExampleMeaningSymbol

2/3/2002 (c) University of Washington, 2001-2 I-16

Omitting Empty Elses

• At times, we only need to decide whether or not to do
something; there’s nothing else to do if we decide no.

if (age >= 21 && age < 30) {

this.checkID(person);

} else {
}

• The “else” part of an if statement can be left off if it's
empty.

if (age >= 21 && age < 30) {

this.checkID(person);

}

2/3/2002 (c) University of Washington, 2001-2 I-17

Range Checking

• We often want to test something like
"is my G.P.A. between 3.5 and 4.0?"

• In math we'd write 3.5 < gpa < 4.0
• Let's try that in Java:

if (3.5 <= gpa <= 4.0) {

this.printDeansListCertificate();

}

• This doesn't work. Why?
• How should we write it?

