

Overview
• Review:
• Names, bindings, declarations, initialization \& assignment
- Today
• Details about expression evaluation and assignment
• Conversions: mixed-mode arithmetic, numbers, and strings
- Reading
• Dugan notes: part of ch. 7
• Niño \& Hosch: sec. 5.2

... and Rebound
- A name can be rebound to a different value using an
assignment.
this.balance = this.balance + amountToDeposit;
- The name now refers to the new value
- Assignments are statements, and can appear anywhere
a statement is allowed. (Just like if statements,
declarations with and without initialization, etc.)
(c) University ofwashington, 2001-2

How Expressions are Evaluated		
kind of expression	examples	value
literal	9 'b' "Bill"	the literal value
creation of a new object	new House() new Rectangle(...)	the newly created object
name of an object	this.frame myMoney	the object the name refers to
message send to an object	this.frame.getX() myMoney.getBalance()	the value the method returns
result of an operator	$\begin{gathered} \text { box.getX(})+173 \\ \text { acct.getBalance()<100.0 } \end{gathered}$	depends how the operator works
25/2002	(c) University of Washington, 2001-2	${ }^{\text {J-6 }}$

Value-returning Methods

- The result of a method call can appear in an expression fantasyBalance $=$ myMoney.getBalance() * 1000.0 ;
- The object must include a method with an appropriate return type
$\mu *$ Access account balance
* @ return current balance of this account */
public double getBalance() \{
return this. balance
\}
- Execution of the return statement:
- Designates the expression value returned by the method, and - Immediately stops execution of the method \& returns that value

25/2002	(c) University of Washington, 2001-2	J-7

Kinds of Numbers

- Java provides two main numeric types - Integers (int) - exact whole numbers; finite range (approx. ± 2147483647)
- Floating-point (double) - scientific notation; finite precision (about 14 decimal digits), but much wider range ($10^{ \pm 308}$) [Dugan notes call these "rational numbers"]
- We sometimes have one kind of number and need to use it where the other kind is expected
- Example: we have a double, but need an int for a graph
- Example: we have an int, but want to call a method with a parameter of type double

Numeric Conversions - Casts

- To convert a double dinto an int, use a cast: (int)d
- Fractional part of the number is discarded double tota|Rainfall = 123.45; int rectangleHeight = (int)totalRainfall;
- (int) is a kind of unary operator, with high precedence, so need parentheses for complicated double expressions. int smallRectangle = (int)/(tota Rainfall / 20.0);
- Don't need an expression to convert an int into a double; Java will do it automatically
- Idea: int->double retains the original value, adding a ". 0 ". double->int might lose information; programmer is required to show that was intended by using a cast

$2 / 5 / 2002$	(c) University of Washington, 2001-2	J-9

